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Abstract

The diet plays a major role in shaping gut microbiome composition and function in both

humans and animals, and dietary intervention trials are often used to investigate and under-

stand these effects. A plethora of statistical methods for analysing the differential abun-

dance of microbial taxa exists, and new methods are constantly being developed, but there

is a lack of benchmarking studies and clear consensus on the best multivariate statistical

practices. This makes it hard for a biologist to decide which method to use. We compared

the outcomes of generic multivariate ANOVA (ASCA and FFMANOVA) against statistical

methods commonly used for community analyses (PERMANOVA and SIMPER) and meth-

ods designed for analysis of count data from high-throughput sequencing experiments

(ALDEx2, ANCOM and DESeq2). The comparison is based on both simulated data and five

published dietary intervention trials representing different subjects and study designs. We

found that the methods testing differences at the community level were in agreement

regarding both effect size and statistical significance. However, the methods that provided

ranking and identification of differentially abundant operational taxonomic units (OTUs)

gave incongruent results, implying that the choice of method is likely to influence the biologi-

cal interpretations. The generic multivariate ANOVA tools have the flexibility needed for

analysing multifactorial experiments and provide outputs at both the community and OTU

levels; good performance in the simulation studies suggests that these statistical tools are

also suitable for microbiome data sets.

Introduction

The microbiome has emerged as an important link to health and disease [1]. Microbiome anal-

ysis methods are rapidly advancing, in particular in areas such as compositional data analysis,

multi-omics and data integration [2, 3]. A clear understanding of the type of data being ana-

lysed is crucial, given the growing number of studies uncovering the key role of microbiome,

its composition and functions following diet intervention or medical treatment [4]. At present,

analysis of complex microbial data benefits from adapting the multivariate statistical
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toolbox from ecology and environmental sciences, and a proper choice of statistical tools is

becoming increasingly important [5–7]. However, a lack of benchmarking studies and clear

consensus on the best multivariate statistical practices make comparisons across microbiome

data sets difficult [2, 8]. New methods are often tested by simulation studies, but there is always

a concern that simulations can be biased towards the tested statistical model and cannot

mimic the complexity of real microbiome data [6, 9]. Moreover, newly introduced tools are

often optimised, whereas the comparison of several statistical methods implies the use of stan-

dard or default parameters [6, 9]. It is therefore of interest to compare existing methods on

real data sets of different complexity, in addition to simulation studies, to better understand

how choice of method affects the results.

Different statistical methods have different properties, and the choice of method should

depend on the scientific question, experimental design, data characteristics and expected rela-

tionships among the variables. Furthermore, the choice of method is often biased by the

research groups’ tradition and familiarity with specific “toolboxes”. Main differences between

existing statistical approaches for analysing microbiome data are related to: (1) explorative ver-

sus confirmative; (2) univariate versus multivariate; (3) parametric versus nonparametric; (4)

linear versus nonlinear; (5) compositional versus non-compositional; (6) distance-based versus

count/abundance-based; and (7) incorporating phylogenetic information into the analysis or

not [10–12]. Here, we explore statistical methods for analysing microbiome data from

designed experiments with a focus on dietary intervention trials. In contrast to observational

studies, these are usually small in sample size but performed in (semi)-controlled environ-

ments and tailored to a specific research hypothesis. The studies often include multiple experi-

mental factors, possibly with more than two levels, and it is therefore natural to turn to

analysis of variance (ANOVA)-like methods. Notably, most published analytical tools in

microbiome research are essentially univariate [6], which led us to the conclusion that compar-

ison of alternative multivariate statistical tools is sorely missing. From a biologist’s point of

view, it is also important that the methods are easy to interpret, both at the multivariate

(microbial community) and univariate (microbial taxa or operational taxonomic units, OTUs)

levels (see Fig 1).

Distance-based methods

The distance-based methods are multivariate since multiple variables (microbial OTUs) are

used to calculate pairwise distances between samples. Among distance-based methods, permu-

tational multivariate analysis of variance (PERMANOVA) is the most widely used and more

powerful than the analysis of similarities (ANOSIM) to detect changes in community structure

[13–15]. Both methods may be implemented with any dissimilarity metric. Among abun-

dance-based beta diversity indices, Bray-Curtis is the most common choice for count data [16,

17]. The most widely applied phylogenetic beta diversity indices are UniFrac-type metrics

[17–19]. However, UniFrac is unsuitable as a distance metric for studies with a small sample

size, which is usually the case for dietary intervention trials [20, 21]. Both PERMANOVA and

ANOSIM test differences at the community level but do not provide any information at the

OTU level. Similarity percentage analysis (SIMPER) works at the univariate level by comput-

ing the relative contribution of each analysed microbial taxon (i.e. OTU) to the overall average

Bray-Curtis dissimilarities by pairwise comparison of two or more groups [15]. To the best of

our knowledge, no such method exists for the other distance metrics.

Distance-based methods have their strengths and weaknesses that are important to account

for beforehand. ANOSIM cannot deal with multifactorial designs, and both ANOSIM and

PERMANOVA may have problems detecting differences unless they are present in taxa with
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high variability [22]. Newer methods aimed at assigning more interpretable effect sizes are

under constant development [6, 23]. For example, the more flexible PERMANOVA-S is an

extension to existing distance-based methods that can adjust for covariates and simultaneously

incorporate multiple distance metrics [24]. However, these methods do not consider covari-

ance/correlation between microbial species, and they encounter significant power loss if all
microbial species are used for distance calculations [25].

Abundance-based methods

The abundance-based methods can be either univariate (analysing each OTU individually)

or multivariate (focusing on covariance structure between OTUs). There are two main

approaches to deal with the special nature of abundance data: (1) application of methods that

consider the distribution of count data or (2) compositional data analysis (CoDa) based on

log-ratio transformed count data [26, 27]. Statistical methods designed for high-throughput

sequencing data are ANOVA-like differential expression analysis (ALDEx2) [26], analysis of

composition of microbiomes (ANCOM) [28], edgeR [29] and DESeq/DESeq2 [30]. edgeR and

DESeq2 model count data directly using generalized linear models with the negative binomial

distribution and the logistic link, respectively, whereas ALDEx2 and ANCOM use the log-ratio

transformation prior to univariate assessment of statistical significance for individual OTUs.

DESeq2 and edgeR are based on the same modelling approach but differ in normalisation, out-

lier handling, and other adjustable parameters; these methods had similar performance in sim-

ulation studies [30]. Thus, we decided to include only one of the methods—DESeq2—because

differences between DESeq2 and edgeR are at a different conceptual level rather than the other

methods discussed. ALDEx2 uses a Dirichlet-multinomial probability distribution to estimate

abundances from count data and calculates the false discovery rate (FDR) based on Monte

Carlo simulations (see Fig 3 in [26] for details). In ANCOM, the compositional nature of the

data is considered by testing the log-ratio for all pairs of OTUs, and then counting the number

of tests where the log-ratio is significantly different from zero. This number (W-stat) can be

used to obtain a ranking of OTUs most likely to differ between the groups. The newly pub-

lished ANCOM-BC corrects the bias induced by differences in sampling fractions and

Fig 1. A diagram of statistical methods used in the study.

https://doi.org/10.1371/journal.pone.0259973.g001
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provides p-values and confidence intervals for the differential abundance of each OTU [31].

The FDR and power were shown to be similar for both ANCOM and ANCOM-BC, and there-

fore we limit the present study to ANCOM.

The drawback of univariate methods is that they treat all taxa as independent variables

without considering the covariance between the OTUs. Such methods may fail to detect com-

munity-level differences [32]. A classical generalisation of ANOVA to multiple variables

(MANOVA) cannot be used when the number of variables exceeds the number of samples, as

it suffers from the problem of a singularity of covariance matrices and assumptions that are

not fulfilled [33, 34]. Novel statistical ANOVA-like methods include fifty-fifty multivariate

analysis of variance (FFMANOVA) [35] and ANOVA-simultaneous component analysis

(ASCA) [33]. Both methods are based on principal component analysis (PCA), and they can

handle multiple collinear responses. In FFMANOVA, the multivariate effects are estimated by

a modified variant of classical MANOVA, and OTU-level p-values are obtained by rotation

tests which adjust the p-values for multiple testing [36]. For ASCA, the multivariate effects are

calculated from combined sums-of-squares from all OTUs, and significance is assessed by per-

mutation testing. ASCA also provides scores and loadings related to each experimental factor,

which can be visualised in the same way as for PCA to better understand covariance patterns

within the data. The contribution of each OTU can be quantified by the loadings or by partial

least squares discriminant analysis (PLS-DA) for pairwise comparisons. ASCA has recently

gained popularity in metabolomics [37–39], and both ASCA and FFMANOVA have success-

fully been applied to microbiome data [40–44].

Linear discriminant analysis effect size (LEfSe) is a stepwise approach that combines uni-

variate analysis with multivariate discriminant analysis [45]. LEfSe has found wide application

in microbiome research due to its easy to-use-and-interpret visualization [46, 47], but it is not

adapted to experimental designs with several multilevel factors and is therefore not considered

in this study.

Method comparison

An overview of the different methods compared in this study is given in Fig 1 and Table 1.

ANOSIM and PERMANOVA provide results only at the community level, while SIMPER,

DESeq2, ANCOM and ALDEx2 report results for single OTUs. ASCA and FFMANOVA are

generic methods and the only methods that provide results at both the community and OTU

level.

The aim of the method comparison was to investigate how different strategies for statistical

modelling affect biological inference. At the community level, methods were compared with

respect to effect sizes (expressed as percentage of explained variance) and corresponding p-val-

ues. At the OTU level, comparison of methods is complex because some methods provide

results for an omnibus test of differences between factor levels (FFMANOVA and ANCOM),

whereas the other methods provide ranking for specific pairwise comparisons (ASCA and

PLS-DA, SIMPER) or contrasts/model coefficients (ALDEx2 and DESeq2). Even so, a biologist

will make inferences based on the output provided by the chosen method, and in this context,

it is relevant to compare the ranking statistics although the tests are not the same. In our study,

the ranking of OTUs was compared by Spearman’s rank correlation and by investigation of

scatterplots between the different ranking metrics. For the simulated data, where we know

which OTUs are differentially abundant, True Positive Rate (TPR) and True Negative Rate

(TNR) were also evaluated.

We focused exclusively on designed experiments, which are usually smaller in sample size

and are more controlled in contrast to observational studies. We used five published data sets
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as a basis for the comparisons (S1 Table). The following criteria for studies to be included were

considered: (1) at least two-factorial experimental design with a minimum of two-factor levels;

(2) either human or animal gut microbiome surveys; and (3) a taxonomic assignment at the

OTU level reported. Diet is the main factor of interest in all five studies, and we restricted our

comparisons to this factor.

The simulated data were based on data set 1 (S1 Table) using the same study design and

OTU counts as a starting point. Four different scenarios were simulated to investigate how the

methods perform in situations with varying effect sizes and different numbers of differentially

abundant OTUs. In all scenarios, one of the diet levels was manipulated to be significantly dif-

ferent from the others, and there was no effect of the second experimental factor (dose). See

Methods section for further details.

Results

Community level

Four of the methods can be used to test the association between diet and the overall micro-

biome composition, the distance-based ANOSIM and PERMANOVA, and abundance-based

ASCA and FFMANOVA. The results for each of the four simulated scenarios are shown in

Fig 2, and the results across real data sets are summarised in Table 2.

Simulated data. As expected, the multivariate effect size (explained variance) is lowest

(around 5%) for the “Few-Low” scenario and highest (30–35%) for the “Many-High” scenario.

The multivariate effect was significant in 100% of the simulations in three scenarios with the

highest effect size. For the “Few-Low” scenario, FFMANOVA performed best by detecting the

effect in 80% of the data sets. For the “Many” simulations explained variance was slightly

higher with FFMANOVA than with ASCA and PERMANOVA, whereas for the “Few-High”
simulations the opposite trend was observed. ANOSIM was less consistent than the other

Table 1. An overview of statistical methods and their properties.

Method Method name Number of

experimental

factors allowed

Parametric Multivariate Univariate Provides output

at community

level

Statistics for

ranking OTUs

Reference

ALDEx2 ANOVA-like differential

expression tool for high-

throughput sequencing data

any yes no yes no p-values or effect

sizes

[26]

ANCOM Analysis of composition of

microbiomes

main factor

+ covariates

yes no yes no W-stat for the

main variable

[28]

ANOSIM Analysis of similarities one no yes no yes no [15]

ASCA ANOVA-simultaneous

component analysis

any yes yes no yes loadings or

PLS-DA regression

coefficients

[33]

DESeq2 Differential gene expression

analysis based on the

negative binomial

distribution

any yes (GLM) no yes no p-values or effect

sizes (coefficients)

[30]

FFMANOVA Fifty-fifty multivariate

ANOVA

any yes yes yes (rotation

tests)

yes p-values [35]

PERMANOVA Permutational multivariate

analysis of variance

any no yes no yes no [14]

SIMPER Similarity percentage two-group

comparison

no yes no no permutation p-

values

[15]

ANOVA—analysis of variance; GLM—generalized linear model; OTU—operational taxonomic unit; PLS-DA—partial least squares discriminant analysis.

https://doi.org/10.1371/journal.pone.0259973.t001
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methods, with higher within-scenario variation and higher differences in effect size between

the two “Low” scenarios.

Data set 1. The effect of dietary fibres inulin (IN), cellulose (CE) or brewers spent grain (BSG)

on the overall caecal microbiota composition in mice from a study by Moen et al. [42]

accounted for 34–37% of the explained variance according to the FFMANOVA, ASCA

and PERMANOVA. In general, the three methods produced similar results, with slightly

smaller p-values by FFMANOVA and ASCA.

Data set 2. Lai et al. [48] investigated the effect of diet (the main variable), exercise and their

interaction on the overall faecal microbiota in sedentary and exercised mice fed high fat or

normal fat diet (four groups in total). Similarly, all tested methods, except ANOSIM, pro-

duced congruent results (effect of diet 27–31%), with smaller p-values by FFMANOVA and

ASCA.

Fig 2. Explained variance for simulated data and the relative number of simulations where the simulated effect was detected.

Numbers indicate the percentage of simulated data sets where p-value was significant.

https://doi.org/10.1371/journal.pone.0259973.g002
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Table 2. Community-level method comparison across five experimental data sets.

Factor/

predictor

FFMANOVAclr ASCAclr PERMANOVAclr ANOSIM3, clr Factor/

predictorEffect size (explained

variance), %

p-value1 Effect size (explained

variance), %

p-

value2
Effect size (explained

variance), %

p-

value2
Effect size (explained

variance), %

p-

value2

Moen et al., 2016 (data set 1) Moen et al., 2016 (data set 1)

Model: OTU ~ fiber�dose Model: OTU ~ fiber_dose

fiber 34.31 < 0.001 37.39 <

0.001

37.26 0.001 82.19 0.001 fiber

dose 3.96 < 0.001 4.14 <

0.001

4.12 0.001 dose

fiber:dose 5.85 < 0.001 5.99 <

0.001

5.96 0.002 fiber:dose

residuals 55.75 52.69 52.67 17.81 residuals

Lai et al., 2018 (data set 2) Lai et al., 2018 (data set 2)

Model: OTU ~ diet�exercise Model: OTU ~ diet_exercise

diet 27.31 < 0.001 30.50 <

0.001

30.85 0.001 99.11 0.001 diet

exercise 12.18 < 0.001 14.08 <

0.001

13.99 0.001 exercise

diet:exercise 7.93 < 0.001 7.51 <

0.001

7.47 0.002 diet:exercise

residuals 52.31 47.74 47.70 0.89 residuals

Le Sciellour et al., 2018 (data set 3) Le Sciellour et al., 2018 (data set 3)

Model: OTU ~ diet�period + subject Model: OTU ~ diet_period

diet 1.78 < 0.001 1.99 <

0.001

2.14 0.001 13.33 0.001 diet

period 3.29 < 0.001 3.45 <

0.001

3.51 0.001 period

diet:period 1.32 < 0.001 1.41 0.006 1.36 0.009 diet:period

subject 26.53 < 0.001 26.42 0.073 27.28 0.046 86.67 subject

residuals 66.13 65.71 65.71 residuals

Wang et al., 2016 (data set 4) Wang et al., 2016 (data set 4)

Model: OTU ~ diet + time + diet:time + subject Model: OTU ~ diet_time

diet 2.49 0.067 2.11 0.038 2.27 0.036 4.32 0.143 diet

time 2.00 0.007 1.96 0.082 1.77 0.246 time

diet:time 5.15 0.824 4.41 0.777 4.45 0.701 diet:time

subject 50.44 < 0.001 54.23 <

0.001

64.30 0.001 95.68 subject

residuals 31.23 27.25 27.21 residuals

Birkeland et al., 2020 (data set 5) Birkeland et al., 2020 (data set 5)

Model: OTU ~ treatment:day + subject Model: OTU ~ treatment_day

treatment:

day

1.75 < 0.001 1.27 0.107 1.27 0.132 -0.03 0.998 treatment:

day

subject 69.38 < 0.001 73.85 0 73.85 0.001 subject

residuals 28.88 24.87 24.87 residuals

Distance-based ANOSIM and PERMANOVA and abundance-based ASCA and FFMANOVA were compared with respect to effect sizes (expressed as percentage of

explained variance) and corresponding p-values.
1based on the 50–50 F-test, 999 permutations.
2based on 999 permutations.
3based on a combined factor with no interaction in the model (limitation of ANOSIM).
clrcentred log-ratio transformed data as input.

https://doi.org/10.1371/journal.pone.0259973.t002
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Data set 3. In a longitudinal study by Le Sciellour et al. [49] the authors tested the effect of die-

tary fibre content on faecal microbiota in growing-finishing pigs fed alternately a low-fibre

and a high-fibre diet during four successive 3-week periods. In this survey, the effect of diet

was small (2%) compared to the effect of diet in data sets 1 and 2. Similarly, FFMANOVA

and ASCA reported slightly lower p-values than PERMANOVA, but all three methods

agreed on the effect of diet.

Data set 4. In a longitudinal study by Wang et al. [50] the objectives were to determine the

impact of beta glucan on the composition of faecal microbiota in mildly hypercholesterol-

emic individuals. The individuals received for 5 weeks either a treatment containing 3 g

high molecular weight (HMW), 3 g low molecular weight (LMW), 5 g LMW barley beta

glucan or wheat and rice (control group) [50]. The effect of diet accounted for ~2% of the

explained variance reported by FFMANOVA, ASCA and PERMANOVA. Diet was signifi-

cant on a 5% level for PERMANOVA and ASCA (p = 0.036 and p = 0.038, respectively) and

on a 10% level for FFMANOVA (p = 0.067). However, different conclusions were drawn

with respect to time where significant result at the community level was obtained only for

FFMANOVA (p = 0.007).

Data set 5. Birkeland et al. [44] assessed the effect of prebiotic fibres or a control supplement

on faecal microbiota composition in human subjects with type two diabetes. The interac-

tion effect of treatment and day accounted for 1–2% of the explained variance according to

the FFMANOVA, ASCA and PERMANOVA. Significant results at the community level

were obtained only for FFMANOVA (p< 0.001).

To summarise, PERMANOVA, FFMANOVA and ASCA gave almost identical results

regarding effect sizes and statistical significance across studies (Table 2). They all revealed that

there was a considerable difference in effect sizes of the main factor of interest (diet) between

animal (2–37%) and human (1–2%) dietary interventions, with effect sizes being very small in

human studies. In addition, three of the studies had crossover designs allowing for estimation

of interindividual variation. This variation was considerably higher for trials involving human

subjects (54–74%) compared to the animal study (26%). ANOSIM provided the most different

results and was not able to reveal the same biological insights since the multifactorial nature of

the studies cannot be taken into consideration by this approach.

OTU level

Six of the methods, namely SIMPER, ASCA, FFMANOVA, ANCOM, ALDEx2 and DESeq2

can be used to make biological inferences for individual OTUs. The methods give different

outputs which can be used to identify differentially abundant OTUs and/or rank the OTUs

according to effect sizes (see Methods for details).

Simulated data. The True Positive Rate (TPR) for the four simulated scenarios is shown

in Fig 3. The True Negative Rate (TNR) was close to 100% for all methods and is therefore

not shown. ASCA provided the overall best results in terms of the TPR in all four scenarios.

FFMANOVA, SIMPER and ANCOM were all highly sensitive in the scenario with few signifi-

cant OTUs and a high effect size (“Few-High”). FFMANOVA was also highly sensitive in the

scenario with many significant OTUs and a high effect size (“Many-High”); SIMPER and

ANCOM performed best in the scenario with few significant OTUs with a lower effect size

(“Few-Low”). Both ALDEx2 and DESeq2 detected very few OTUs in any of the scenarios and

therefore had very low TPR.

Experimental data. Summary tables and scatterplots comparing ranking for different

methods on the experimental data sets are given as S1 File and S1 Fig, respectively. The
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number of significant OTUs detected by the methods is summarised in S2 Table. As expected,

many significant OTUs were discovered in the studies with large multivariate effect sizes (data

sets Moen and Lai), whereas few OTUs were found in the studies with low multivariate effect

sizes. The highest number of significant OTUs was identified by FFMANOVA, with almost

twice the numbers detected by ALDEx2. ANCOM differed considerably between the study

designs. ASCA recovered fewer OTUs than the other methods for the Moen data set, but more

OTUs than the other methods for the other data sets.

Correlation between the methods. Agreement between the methods was investigated by

calculating Spearman’s rank correlation between all pairs of output metrics (Fig 4). In the sim-

ulated data, FFMANOVA and ASCA had higher agreement than any other pair of methods,

with correlations ranging from 0.6 to 0.75. In addition, the correlations were generally higher

for scenarios with many differentially abundant OTUs for all methods. The results from the

experimental data sets also showed that FFMANOVA and ASCA had highest agreement, with

correlations ranging from 0.4 to 0.9. However, correlations varied considerably between the

Fig 3. Sensitivity (True Positive Rate) for the four scenarios in the simulation study.

https://doi.org/10.1371/journal.pone.0259973.g003
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data sets. Highest agreements were observed for the animal studies, which are more controlled,

and where interindividual variation is smaller compared to studies involving human subjects.

The Moen and Wang data sets had a lower correlation between the methods than the other

data sets for many comparisons, which could be explained by the fact that there are more than

two levels of the diet factor, and omnibus tests will therefore not completely agree with the

pairwise comparisons.

Impact of OTU abundance. Gut microbiome data are typically represented by a few

dominant OTUs (relative abundance >1%) and a majority of low-abundant OTUs. One is

therefore interested in ranking OTUs independent of their average abundance to detect bio-

logically relevant changes in low-abundant OTUs. For all methods, except SIMPER, correla-

tions in the range 0.1–0.4 were observed between the ranking statistics and the (log) mean

relative abundance. However, it was not consistent between the data sets which method gave

higher correlations. Correlations between the relative abundance and the ranking statistics

were highest for the Moen data set and lowest for the Birkeland data set (S2 Table). ANCOM

differed from the other methods as the ranking of OTUs was highly dependent on the abun-

dance (Fig 5 and S1 Fig). In particular, the results indicated that highly abundant OTUs had

either very high or very low W-stat, while low-abundant OTUs always had medium-to-low W-

stat. To the best of our knowledge, this finding has not been reported before and shows that

ANCOM is not able to identify changes in low-abundant OTUs. In the simulation study, clear

differences between the scenarios with “Few” or “Many” differentially abundant OTUs can be

observed (Fig 5A and 5C), and similar patterns are reflected for the experimental data (Fig 5B

and 5D). It has been shown that power of ANCOM drops when the number of differentially

abundant OTUs exceeds 25% [28]. In our “Many” simulations, 50% of the OTUs are differen-

tially abundant, which justifies why ANCOM performed poorly for these scenarios. The

dependency on the relative abundance can be more problematic also for the “Many” scenarios

(Fig 5C) and data sets with many differentially abundant OTUs as, for instance, the Moen data

set (Fig 5D).

Fig 4. Spearman’s correlation (Y-axis) calculated for pairwise comparison of statistical methods (X-axis) for (A) simulated data and (B) five

experimental data sets. Each point represents Spearman’s rank correlation coefficient between OTU ranking metrics from the two methods compared.

https://doi.org/10.1371/journal.pone.0259973.g004
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Discussion

Diet is considered to be an important driver of microbiome variation [51]. However, in obser-

vational population-based studies, diet consistently accounts for only a small proportion of

microbiome variation, and this is partly due to large interindividual differences in microbiome

composition, small sample sizes and limitations in study designs such as potentially insuffi-

cient washout periods in crossover studies [51–55]. In general, higher interindividual variation

is observed in gut microbiome of human subjects compared to animal species [56]. This was

confirmed by our results, and it can partly explain the lower diet related effect on the gut

microbiomes in the two human studies. Variation in how much a diet can influence the micro-

biome is also dependent on the nutritional differences of the compared diets. Nevertheless, use

Fig 5. Mean relative abundance (log-scale) plotted versus ANCOM W-stat. (A) The “Few-Low” simulation scenario and (B)

Birkeland data set, (C) “Many-Low” simulation scenario and (D) Moen data set. Red points (panels A and C) indicate differentially

abundant OTUs.

https://doi.org/10.1371/journal.pone.0259973.g005
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of animal models to study a causal role of the gut microbiome in health and disease is an estab-

lished practice although animal models lack the specific interactions present in the complex

system of a human organism [57].

Univariate and multivariate analyses provide information at different levels. Biologists will

often find that the outputs of univariate analyses are easier to interpret compared to those gen-

erated by multivariate analyses, though assumptions are similar for both method types [10]. In

general, multivariate methods provide a more holistic overview of differences between samples

and account for correlations and interactions between the variables, whereas univariate meth-

ods are well suited to point out the differences for specific microbial groups. Therefore, the

two levels of analysis provide complementary information, and it is generally of biological

interest to report differences at both levels.

FFMANOVA and ASCA consider the covariance between all OTUs. It could therefore be

expected that these methods would be better at detecting scenarios with many differentially

abundant OTUs due to the consistency at large phenomenon, i.e. that many OTUs carry the

same information and such methods collectively are able to detect small effects that are not sig-

nificant at the univariate level [58, 59]. At the community level, these methods performed simi-

larly to the distance-based methods. At the OTU level, they had considerably higher sensitivity

to identify true positive OTUs than the other methods in the “Many” OTU scenarios.

FFMANOVA and ASCA depend on the relative scaling of the OTUs, while for the dis-

tance-based methods it depends on the chosen distance measure. It is a common practice in

many areas to scale all variables to equal variance thus giving them an equal weight in the

model, but other options are also possible, see, for instance, van den Berg et al. [60]. The clr-

transformation puts the variables at comparable levels, and the need for scaling is less obvious.

However, the highly abundant OTUs might still have slightly higher variance and scaling

should be considered depending on the data characteristics and the biological interpretation.

With scaling, all OTUs have the same contribution in the analysis, whereas without scaling the

more abundant OTUs will dominate the analyses and the inferences will be related to the

more abundant OTUs.

It is a known fact that microbial sequence data are zero-inflated, and rare OTUs should be

removed prior to downstream statistical analyses. We have observed that the threshold for

filtering out OTUs can significantly affect the results both at the community and OTU levels.

This can be exemplified in the human Birkeland data set, where stricter OTU-filtering per-

formed in the present study resulted in no significant treatment effect by ASCA, in contrast

to the original publication [44].

The tools tested in the present study vary in flexibility. SIMPER allows only pairwise com-

parisons and ANOSIM provides multigroup analysis, but it is not suited for multifactorial

study designs. The other methods can employ more complex models with multiple factors

with varying number of levels, and corresponding interactions. In experiments with repeated

measurements, the subject effect is often included as a random factor. Neither of the methods

discussed here can do this, hence the subject effect was included as a fixed factor. These aspects

should be considered when selecting methods because different study designs might require

different types of statistical models and tests. Newer developments of ASCA, namely ASCA+

[61] and LiMM-PCA [62], increase flexibility when there are unbalanced designs or random

(i.e. subject) effects, respectively. Even so, the longitudinal modelling of large microbiome data

sets in combination with multiple covariates is only starting to emerge [6].

Although Spearman’s rank correlation indicated good agreement for the animal studies

(Fig 4), little overlap between lists of “significant” results could be detected (results not

shown). There can be several reasons for this. One important aspect is that different criteria

must be used to define “significance” or generally “importance”. FFMANOVA, SIMPER,
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DESeq2 and ALDEx2 provide p-values, while more heuristic tools must be applied with ASCA

and ANCOM. For some methods, such as FFMANOVA and ANCOM, the ranking is related

to all levels of the experimental factors, whereas the other methods use only pairwise compari-

sons (SIMPER) or comparison against a selected control/reference level (ALDEx2 and

DESeq2). ASCA provides a test related to all levels at the community level, while the PLS-DA

step relates to pairwise comparisons at the OTU level. This will introduce a bias for data sets

with multilevel factors where more than one level is different from each other. Nevertheless,

we chose to compare these rankings as this is the output that is available to the user. In the sim-

ulations only one level of one factor was designed to have an effect, hence the “omnibus” and

the “specific” tests are more directly comparable. In experiments with multilevel factors, addi-

tional information can be obtained by looking at the clr-difference between the groups of

interest in addition to the ranking statistics.

Moreover, differences in sample collection, sample preparation and sequencing contribute

to additional variability, which, in turn, affects the validity of the results [63] and complicates

comparisons across studies with similar interventions.

Past benchmarking studies [9, 64, 65] have reported varying results from different tools,

which was also confirmed in our study. Currently, there is no consensus for the best existing

tool for detecting differentially abundant microbial taxa, and there is no reason to believe that

one single method is best in all cases. Based on our simulations, the generic multivariate tools,

ASCA and FFMANOVA, performed best. We anticipate that these results will inform future

studies with more complex settings where more than one factor has an effect or interactions

between experimental factors are included in the model.

In addition to performance, ease of use is an important aspect when selecting the appropri-

ate tool. FFMANOVA and ASCA are based on standard statistical tools, namely PCA and

ANOVA. Some of the tools designed for microbiome high-throughput sequencing data, on

the other hand, can be difficult for non-statisticians, and it can be questioned if the users are

able to interpret all parameters correctly, even if the methods are supported by comprehensive

documentation. It is always good scientific practice to compare and report outputs from sev-

eral methods. There are no standards on how to report multiple modelling results, and there is

a high risk of “fishing for significance” when several methods are applied [66]. Before design-

ing the experiment, researchers should be aware of the different properties of the statistical

methods and consider whether it is most important not to miss out on any possible findings or

to obtain robust results. In the latter case, OTUs should be reported as differentially abundant

only if they were flagged as “significant” by several methods [66].

Conclusion

In the present study, we compared the performance of several multivariate ANOVA-like statis-

tical methods taking four simulated scenarios and five real dietary intervention microbiome

data sets as examples. At the community level, all the different methods came to similar con-

clusions; at the OTU level, the agreement between the methods considerably varied. ANCOM

provided output metrics that were dependent on the average abundance, making it impossible

to detect differences in low-abundant OTUs. At the OTU level, the ranking of OTUs obtained

with different methods correlated better for animal studies than for human studies, possibly

due to lower interindividual variation in animal studies. Based on the simulation results we

advise applying FFMANOVA and ASCA for overall and pairwise comparisons of microbiome

data, respectively, also because these methods provide output at both the community and

OTU levels, can handle several design factors, as well as other data types common in micro-

biome research.
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Methods

Experimental design and data characteristics

The dietary intervention data sets were selected based on the study design, with a minimum of

two independent variables (for example, diet and dose; see S1 Table for details). Prior to the sta-

tistical analyses, the data were filtered to keep the OTUs that were present: (1) with relative abun-

dance more than 0.005% in an individual, and (2) in at least 50% of the individuals and in one of

the groups. For each study in total 507, 561, 560, 397 and 216 OTUs passed this filter and were

subsequently used in downstream analyses (S1 Table and S2 File). All statistical analyses were

performed in R version 4.1.0 [67] unless otherwise specified and were run in 999 permutations.

Simulated data were generated using the R package metaSPARSim [68] developed for sim-

ulating 16S rDNA data. The simulation was a two-step process: (1) modelling the abundance

(expected counts for each experimental group) using a Gamma distribution; (2) modelling the

within-group variability using a Multivariate Hypergeometric (MHG) distribution taking the

output from step 1 as input parameters for the distribution. In addition, metaSPARSim con-

tains functions for parameter estimation from observed data. We used data set 1 [42] (S1

Table) to estimate real starting parameters for the simulations. Raw counts were generated for

the same number of OTUs as in the experimental data set, and subsequently pre-processed

and analysed in the same manner as for the experimental data (described below). Four differ-

ent scenarios were simulated, with a varying number of the differentially abundant OTUs

(“Few” versus “Many”) and the effect sizes (“Low” versus “High”). 100 data sets were generated

and analysed for each of the four scenarios:

1. “Few—Low”: 10 randomly selected OTUs were assigned random log2 fold changes from a

uniform distribution with boundaries [3,4].

2. “Few—High”: 10 randomly selected OTUs were assigned random log2 fold changes from a

uniform distribution with boundaries [8,9].

3. “Many—Low”: 254 randomly selected OTUs were assigned random log2 fold changes from

a uniform distribution with boundaries [3,4].

4. “Many—High”: 254 randomly selected OTUs were assigned random log2 fold changes

from a uniform distribution with boundaries [8,9].

Zero-value replacements were done prior to clr-transformation [27, 69] by applying func-

tion cMultRepl with a setting method = ‘CZM’ in the R package zCompositions [70]. Zero

replacement is an ongoing and yet unsolved statistical problem in microbiome research, and

newer methods are constantly being developed and applied to both simulated and experimen-

tal data sets [71–74].

ANOSIM and PERMANOVA were run using the functions anosim and adonis in the R

package vegan [75], with a setting method = Euclidean and the clr-transformed data as input.

SIMPER was run on filtered relative abundance data using function simper from the R

package vegan [75]. The p-values for each OTU between selected pairwise comparisons of diet

levels were used as a ranking metric; the p-value represents the probability of getting a larger

contribution to the Bray-Curtis dissimilarity in a random permutation of the group factor.

FFMANOVA was performed by using the function ffmanova implemented in the R pack-

age ffmanova [35] on the clr-transformed and standardised data. Raw p-values were used as a

ranking metric.

ASCA was run on the clr-transformed and centred data using an in-house implementation

in MATLAB (R2018b, The MathWorks Inc.); p-values at the community level were calculated
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by permutation tests (n = 999). PLS-DA models [76] with the ASCA diet effect matrix, residu-

als as a predictor and factor levels as a response were used for pairwise comparison of diet lev-

els. Variable Importance in Prediction (VIP) values [76] were used to identify significant

OTUs, and the VIP threshold was set using the Uninformative Variable Elimination (UVE)

method [77]. The UVE procedure was repeated 100 times, and OTUs that were above the

threshold in >95% of the repetitions were defined as significant. For study designs with two

diet levels, the ASCA loadings were used to rank OTUs, while PLS-DA regression coefficients

were used for pairwise comparisons of multilevel diet factors.

ANCOM was run by using the ANCOM 2.0 source code implemented in R [28] using fil-

tered relative abundance data as input. The W-stat was used to rank OTUs indicating the

number of significantly different pairwise log-ratios while adjusting for FDR by applying a

Benjamini-Hochberg correction at a 0.05 level of significance.

ALDEx2 was run using the functions aldex.clr and aldex.glm from the R package ALDEx2

v.1.18.0 [26]. We used raw counts as input and p-values for selected factor level contrasts to

rank OTUs.

DESeq2 was run using the functions DESeqDataSetFromMatrix (to generate object), DESeq
(for analysis) and results (to extract results) from the Bioconductor package version 1.32.0

[30]. We used raw counts as input and raw p-values for selected level contrasts to rank OTUs

(default settings).

Factor level comparisons

For study designs with more than two diet groups, only one pairwise comparison was analysed

for the methods based on the pairwise group comparison, namely ALDEx2, ASCA and SIM-

PER. The following pairs with the most contrasting outcomes were compared: (1) BSG group

vs. IN group [42]; (2) control group vs. 3 g HMW [50] and (3) Placebo 6 weeks group vs. Fibre

6 weeks group [44].

Differentially abundant OTUs were identified by setting thresholds on the ranking metrics

for each method. For the methods providing p-values, the threshold was set to 0.01. For

ANCOM, the 60th percentile of the empirical distribution of the W-stat was used as a threshold.

For ASCA, OTUs selected in 95 out of 100 UVE-runs were identified as differentially abundant.

True Positive Rate (TPR) and True Negative Rate (TNR) were calculated for the simulated

data. TPR (also called Power or Sensitivity) is calculated as TP/P, where TP is the number of

true differentially abundant OTUs identified by a statistical method and P is the number of dif-

ferentially abundant OTUs defined in the simulation setup. The TNR (also called Specificity) is

calculated as TN/N, where TN is the number of true non-differentially abundant OTUs identi-

fied by a statistical method and N is the corresponding number defined in the simulation setup.
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S2 Fig. Explained variance for simulated data and the number of simulations where the

simulated effect was detected. Differentially abundant OTUs are shown in red and non-dif-

ferentially abundant OTUs in black.
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38. Gómez-Canela C, Prats E, Lacorte S, Raldúa D, Piña B, Tauler R. Metabolomic changes induced by

nicotine in adult zebrafish skeletal muscle. Ecotox Environ Safe. 2018; 164:388–97. https://doi.org/10.

1016/j.ecoenv.2018.08.042 PMID: 30142605

39. Trimigno A, Khakimov B, Savorani F, Tenori L, Hendrixson V,Čivilis A, et al. Investigation of Variations

in the Human Urine Metabolome amongst European Populations: An Exploratory Search for Biomark-

ers of People at Risk-of-Poverty. Mol Nutr Food Res. 2019; 63(1):1800216. https://doi.org/10.1002/

mnfr.201800216 PMID: 29757492

40. Bjerke GA, Rudi K, Avershina E, Moen B, Blom H, Axelsson L. Exploring the brine microbiota of a tradi-

tional Norwegian fermented fish product (Rakfisk) from six different producers during two consecutive

seasonal productions. Foods. 2019; 8(2):72. https://doi.org/10.3390/foods8020072 PMID: 30769832

41. Måge I, Steppeler C, Berget I, Paulsen JE, Rud I. Multi-way methods for understanding longitudinal

intervention effects on bacterial communities. bioRxiv: 363630v1 [Preprint]. 2018:[cited 1 Sept 2021].

Available from: https://www.biorxiv.org/content/10.1101/363630v1.

42. Moen B, Henjum K, Måge I, Knutsen SH, Rud I, Hetland RB, et al. Effect of dietary fibers on cecal micro-

biota and intestinal tumorigenesis in azoxymethane treated A/J Min/+ mice. PLoS One. 2016; 11(5):

e0155402. https://doi.org/10.1371/journal.pone.0155402 PMID: 27196124

43. Moen B, Røssvoll E, Måge I, Møretrø T, Langsrud S. Microbiota formed on attached stainless steel cou-

pons correlates with the natural biofilm of the sink surface in domestic kitchens. Can J Microbiol. 2016;

62(2):148–60. https://doi.org/10.1139/cjm-2015-0562 PMID: 26758935

PLOS ONE Analysing microbiome intervention design studies: Comparison of alternative multivariate statistical methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0259973 November 18, 2021 18 / 20

https://doi.org/10.1214/17-AOAS1102
http://www.ncbi.nlm.nih.gov/pubmed/30224943
https://doi.org/10.1093/bioinformatics/btw311
http://www.ncbi.nlm.nih.gov/pubmed/27197815
https://doi.org/10.1186/s13073-016-0302-3
http://www.ncbi.nlm.nih.gov/pubmed/27198579
https://doi.org/10.1186/2049-2618-2-15
https://doi.org/10.1186/2049-2618-2-15
https://doi.org/10.3389/fmicb.2017.02224
http://www.ncbi.nlm.nih.gov/pubmed/29187837
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pubmed/19910308
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.1038/s41467-019-13993-7
http://www.ncbi.nlm.nih.gov/pubmed/31911652
https://doi.org/10.1007/s11306-013-0598-6
https://doi.org/10.1007/s11306-013-0598-6
https://doi.org/10.1093/bioinformatics/bti476
http://www.ncbi.nlm.nih.gov/pubmed/15890747
https://doi.org/10.1016/0169-7439(90)80094-M
https://doi.org/10.1111/1467-9884.00320
https://link.springer.com/content/pdf/10.1007/s11222-005-4789-5.pdf
https://link.springer.com/content/pdf/10.1007/s11222-005-4789-5.pdf
https://doi.org/10.1089/omi.2019.0140
http://www.ncbi.nlm.nih.gov/pubmed/31613685
https://doi.org/10.1016/j.ecoenv.2018.08.042
https://doi.org/10.1016/j.ecoenv.2018.08.042
http://www.ncbi.nlm.nih.gov/pubmed/30142605
https://doi.org/10.1002/mnfr.201800216
https://doi.org/10.1002/mnfr.201800216
http://www.ncbi.nlm.nih.gov/pubmed/29757492
https://doi.org/10.3390/foods8020072
http://www.ncbi.nlm.nih.gov/pubmed/30769832
https://www.biorxiv.org/content/10.1101/363630v1
https://doi.org/10.1371/journal.pone.0155402
http://www.ncbi.nlm.nih.gov/pubmed/27196124
https://doi.org/10.1139/cjm-2015-0562
http://www.ncbi.nlm.nih.gov/pubmed/26758935
https://doi.org/10.1371/journal.pone.0259973


44. Birkeland E, Gharagozlian S, Birkeland KI, Valeur J, Måge I, Rud I, et al. Prebiotic effect of inulin-type

fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomised controlled

trial. Eur J Nutr. 2020; 59:3325–38. https://doi.org/10.1007/s00394-020-02282-5 PMID: 32440730

45. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker dis-

covery and explanation. Genome Biol. 2011; 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60

PMID: 21702898

46. Chi C, Xue Y, Lv N, Hao Y, Liu R, Wang Y, et al. Longitudinal gut bacterial colonization and its influenc-

ing factors of low birth weight infants during the first 3 months of life. Front Microbiol. 2019; 10:1105.

https://doi.org/10.3389/fmicb.2019.01105 PMID: 31156608

47. Girard C, Tromas N, Amyot M, Shapiro BJ. Gut microbiome of the canadian arctic Inuit. mSphere.

2017; 2(1):e00297–16. https://doi.org/10.1128/mSphere.00297-16 PMID: 28070563

48. Lai Z-L, Tseng C-H, Ho HJ, Cheung CK, Lin J-Y, Chen Y-J, et al. Fecal microbiota transplantation con-

fers beneficial metabolic effects of diet and exercise on diet-induced obese mice. Sci Rep. 2018; 8

(1):15625. https://doi.org/10.1038/s41598-018-33893-y PMID: 30353027

49. Le Sciellour M, Labussière E, Zemb O, Renaudeau D. Effect of dietary fiber content on nutrient digest-

ibility and fecal microbiota composition in growing-finishing pigs. PLoS One. 2018; 13(10):e0206159.

https://doi.org/10.1371/journal.pone.0206159 PMID: 30356293

50. Wang Y, Ames NP, Tun HM, Tosh SM, Jones PJ, Khafipour E. High molecular weight barley β-glucan

alters gut microbiota toward reduced cardiovascular disease risk. Front Microbiol. 2016; 7:129. https://

doi.org/10.3389/fmicb.2016.00129 PMID: 26904005

51. Vangay P, Johnson AJ, Ward TL, Al-Ghalith GA, Shields-Cutler RR, Hillmann BM, et al. US immigration

westernizes the human gut microbiome. Cell. 2018; 175(4):962–72.e10. https://doi.org/10.1016/j.cell.

2018.10.029 PMID: 30388453

52. Hughes RL, Kable ME, Marco M, Keim NL. The role of the gut microbiome in predicting response to diet

and the development of precision nutrition models. Part II: results. Adv Nutr. 2019; 10(6):979–98.

https://doi.org/10.1093/advances/nmz049 PMID: 31225587

53. Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR, et al. Daily sampling

reveals personalized diet-microbiome associations in humans. Cell Host Microbe. 2019; 25(6):789–

802. e5. https://doi.org/10.1016/j.chom.2019.05.005 PMID: 31194939

54. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates

over host genetics in shaping human gut microbiota. Nature. 2018; 555(7695):210–5. https://doi.org/10.

1038/nature25973 PMID: 29489753

55. So D, Whelan K, Rossi M, Morrison M, Holtmann G, Kelly JT, et al. Dietary fiber intervention on gut

microbiota composition in healthy adults: a systematic review and meta-analysis. Am J Clin Nutr. 2018;

107(6):965–83. https://doi.org/10.1093/ajcn/nqy041 PMID: 29757343

56. Nagpal R, Wang S, Solberg Woods LC, Seshie O, Chung ST, Shively CA, et al. Comparative micro-

biome signatures and short-chain fatty acids in mouse, rat, non-human primate, and human feces.

Front Microbiol. 2018; 9:2897. https://doi.org/10.3389/fmicb.2018.02897 PMID: 30555441

57. Baker DH. Animal models in nutrition research. Nutr J. 2008; 138(2):391–6. https://doi.org/10.1093/jn/

138.2.391 PMID: 18203909

58. Hui BS, Wold HOA. Consistency and consistency at large of partial least squares estimates. In: Jöres-
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