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A B S T R A C T   

Atlantic herring was commercially captured with purse seine in catches of 100–400 Mt. During crowding 0–30 
min individual fish were sampled from the purse seine, killed by a percussive blow to the head and blood lactate 
was measured. Muscle pH and rigor index was measured over 24 h. Additionally, 100 fish sampled before and 
after crowding were stored in tanks, filleted, and analyzed for flesh quality (texture, gaping, blood content, 
colour and appearance), prior to and after freezing and thawing. Results show that the pre mortem stress 
associated with capture caused anaerobic muscle activity and the formation of lactic acid both in muscle and 
blood, elevating with crowding duration. The onset of rigor mortis accelerated with increasing crowding 
duration. Crowding in the purse seine did lead to lower quality scores of the fillets as seen in softer texture, 
increased blood content and gaping. Except for blood content, freezing and thawing amplified all measured 
quality parameters related to the level of stress. We conclude that stress associated with capture and duration of 
crowding affect the animal’s welfare and will have negative effect on the fillet quality of herring.   

1. Introduction 

Over the past decades, the market dynamics for Atlantic herring 
(Clupea harengus) has shifted from being a major raw material source for 
the fish meal industry to mainly being used for human consumption. As 
a result, Atlantic herring, in particular the Norwegian spring-spawning 
herring (NSH), has become one of Norway’s most economically valu
able specie within fisheries, next after Atlantic mackerel (Scomber 
scombrus) and Atlantic cod (Gadus morhua). In 2020, Norway exported 
317.418 Mt of Atlantic herring, worth roughly € 380 million. In line with 
this development, the average prices on first-hand sales of Atlantic 
herring have increased gradually from 1998 to 2020 from 0.77 to 1.1 
€/kg (SSB, 2021). An increasing proportion of the Norwegian herring 
catch is processed into fillets, which in recent years has comprised 
approximately 40%, by volume. Although prices of Atlantic herring is 
dependent on size distribution (Zimmermann and Heino, 2013), the 
overall pricing after retail market is a good indicator that an overall high 
quality of products is an important driving force (Bronnmann and Bitt
mann, 2019). 

It is well known that flesh quality traits like color and proximal 
composition of Atlantic herring varies with season and maturity (Hamre 
et al., 2003; Hyldig et al., 2012; Jensen et al., 2005). These variations are 

quite predictable. More challenging are sudden changes in quality be
tween different catches that can occur simultaneously at the same or at 
different fishing grounds. On some occasions, these changes can easily 
be explained by the fish’s prey content at time of death. The latter affects 
enzyme activity and can involve leakage and subsequent belly burst 
(Felberg et al., 2010, 2009; Veliyulin et al., 2007). Also, the storage 
conditions such as temperature and time elapsed between capture and 
processing or varying freezing conditions are of key importance (Dang 
et al., 2018; Losada et al., 2007). Of major importance is also the fishing 
gear used. Previous research on Baltic herring shows that herring caught 
by gillnet had an earlier onset of rigor mortis and inosin mono phosphate 
(IMP) as compared to trawl and trap-net (Hattula et al., 1995), whereas 
pelagic trawling is known to cause mortality due to physical damage 
(Suuronen et al., 1996). 

Fishing with purse seine involves surrounding a school of fish with a 
seine, tightening the gap from the bottom such that the net forms a 
purse. Thereafter the fish is crowded on the longside of the vessel and 
pumped onboard. For the purse seine, one challenging phase could be 
crowding into high densities (excess of 200 kg/m3) lasting one hour or 
longer (Digre et al., 2016; Tenningen et al., 2012). Crowding can involve 
several physiological and environmental challenges for the fish resulting 
in panic followed by exhaustion, hypoxia and death (Anders et al., 
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2019a; Olsen et al., 2012; Tenningen et al., 2012). The physical strain 
caused by the pump itself when pumping fish onboard the vessel or 
when pumping fish between vessels when the volume of fish must be 
reduced, is also of importance for the quality (Digre et al., 2016). 

In addition to fish welfare, the pre mortem stress associated with 
crowding influences the fillet quality in a wide range of aquaculture 
(Daskalova, 2019) and white fish species (Olsen et al., 2013; Svalheim 
et al., 2020). For wild caught, and for pelagic species in particular, few 
studies exist. For Skipjack tuna it has been reported that stress influence 
the quality of canned products (Crawford et al., 1970), while on Bluefin 
tuna (Thynnus thynnus), the associated effects of stress caused no color 
changes of the flesh (Addis et al., 2013). More recent studies also show 
detrimental effects of stress on the flesh quality of Atlantic mackerel 
(Anders et al., 2020). 

Recent studies on herring show that the fish do respond with stress 
towards crowding and can be exhausted as rapidly as within 10 min, 
followed by a risk of mortality as a result of scale loss (Olsen et al., 
2012). The effects of crowding of herring in the purse seine on the flesh 
quality have not been studied. It would therefore be of paramount in
terest to examine whether the stress associated with crowding could 
explain quality differences within a catch. The aim of this study was 
therefore to investigate how herring respond to crowding during com
mercial operation and the subsequent effect on flesh quality on both 
fresh and frozen products. 

2. Material and methods 

In February 2011, on the west coast of Norway, a total of 1000 tons of 
migrating Atlantic herring (Clupea harengus) from the Norwegian spring- 
spawning herring stock (NSH), were captured with purse seine by a 
commercial fishing vessel (MS Birkeland). The fish were caught in 4 
catches, each between 100 and 400 tons, within one fishing trip lasting 
24 h. The total duration of crowding (> 200 kg/m3) varied from 0 to 30 
min, before the fish were pumped onboard into tanks containing 
refrigerated sea water (RSW) with a temperature of − 1 ◦C. The seawater 
temperature was approximately 8 ◦C. 

The sampling of fish started the moment the fish were crowded 
alongside the vessel in such amount that single fish could be caught 
using a long dipnet. The fish were sampled one at the time and imme
diately killed by a percussive blow to the head. Fish were sampled from 
the start of the crowding and approximately every 5 min until the end of 
the crowding, resulting in a total of 17 fish over 4 catches. For each fish, 
blood was drawn from the caudal vein immediately after killing before 
measuring muscle pH and rigor index and placed into polystyrene boxes 
containing ice. Subsequently muscle pH and rigor index were measured 
on the same fish over 24 h. 

For quality analysis a total of 200 herring were sampled from the last 
and largest catch, at the beginning of crowding (Control, n = 100) and at 
the end of the catch 30 min later (Stress, n = 100). The fish were killed 
by a percussive blow to the head and stored in RSW tanks at − 1 ◦C for 
24 h, before being packed with ice in polystyrene boxes and shipped by 
air cargo to laboratories at Nofima, Stavanger. There the fish were stored 
on ice in a chill room until quality analysis. Six days post mortem all fish 
were filleted; from each fish one fillet was used to measure texture 
hardness and color in fresh condition, while the other fillet was 
measured equally after being vacuum packed with salt brine (34‰), 
frozen at –28 ◦C and thawed after 3 months of frozen storage. 

2.1. Blood analysis 

Unheparized whole blood was extracted from the caudal vessels of 
the fish and analyzed using two i-STAT® 300 Portable Clinical Analyzer 
(I-stat, Abbott, Princeton, NY, U.S.A). The analysers were used in 
conjunction with CG4 + disposable cartridges and analysed for lactate. 

2.2. Rigor mortis and muscle pH 

Rigor mortis was measured by the angle (0–90◦) of the tail drop while 
placing half of the fish length outside a table. Rigor was measured at 0, 3, 
6, 9, 12, 18 and 24 h post mortem. 

In each fish the muscle pH was measured in white muscle tissue in 
the dorsal back anterior to the dorsal fin using a Mettler Toledo SevenGo 
pro™ pH meter (Mettler Toledo INC, N.Y., USA) equipped with Inlab 
puncture electrode. The pH meter was calibrated with pH 4.01, 7.00 and 
10.01 buffers at 20 ◦C. 

2.3. Quality grading 

All fillets were graded and given scores according to gaping (1–3), 
Blood content (1–3) and total visual appearance as shown in Fig. 1. 
Grading was carried out by 2 technicians, one scoring each fillet based 
on blood content and gaping and the other providing the score on the 
total visual appearance. 

2.4. Color measurements 

Fillet color was measured as Lightness (L*) redness (a*) and yel
lowness (b*) by image analysis DigiEyeTM (VeriVide Ltd., Leicester, 
UK). Each fillet was placed into an illumination cabinet which ensures a 
uniform lighting, standard daylight (6400 K) and photographed with a 
Nikon D80camera with a Nikkor lens. The color of the whole fillet, 
except the belly flaps was measured using DigiPix (VeriVide Ltd., 
Leicester, UK) color measurement software. 

2.5. Texture analysis 

For texture measurements a flat cylinder with a diameter of 5 mm 
was used for the test probe hardness (puncture test) with a TA-XT2® 
-Pro Texture Analyser (Stable Micro Systems, Surrey, UK) with a 10 kg 
load cell (Roth et al., 2008). The penetration depth for the probe was 
80% of the fillet height and the speed was 1 mm/s. The texture profile 
was measured at 2 locations, 1 cm apart anterior to the dorsal fin. The 
breaking force was defined as the force required for the cylinder to 
penetrate the fillet surface. 

2.6. Statistical analysis 

To continuously test independent variables such as pH and blood 
lactate against time of crowding linear regression was used as the sta
tistical model. Log transformation of both variables was carried out to 
obtain linearity and normal distribution of the residuals. Multiple 
regression was used to test pH against the two continuous and inde
pendent variables crowding and storage time. General linear model 
(GLM) was used to test categorical groups of stressed fish against pH 
using post mortem storage time as a covariate. Correlation analysis was 
used to test the correlation between pH and lactate measurements. The 
angle of rigor was turned into logit function (0–1) performing radians 
transformation and tested using log linear regression. For the quality 
analyses, factorial ANOVA was used for testing color against categorial 
variables such as stress and freezing, whilst for texture analysis ANCOVA 
was used, with fillet thickness as a covariate. 

3. Results 

By the time herring was crowded and ready for pumping the 
mean ± SE lactate and muscle pH had reached 2.0 ± 0.31 mmol/L and 
7.5 ± 0.087, respectively. During crowding herring showed increased 
anaerobic muscle activity and hypoxia with a significant accumulation 
of lactate (P < 0.0005, r = 0.81; linear regression, Fig. 2a), followed by 
a drop in muscle pH (P < 0.005, r = 0.72; linear regression, Fig. 2b), 
peaking after 30 min with 6.3 ± 1.00 mmol/L lactate, while pH variated 
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from 7.1 ± 0.14 to 7.23 ± 0.34 after 15 and 30 min of crowding. As 
shown in Fig. 2c, the muscle pH correlated with blood lactate 
(P < 0.005, r = − 0.72; correlation analysis). 

Multiple regression shows that muscle pH in Fig. 2b was dependent 
both on crowding duration and storage time (P < 0.0005, r = 0.78, 
F = 39 and 102 receptively), whereas fish stressed for 5 min or more 
maintained a significant lower muscle pH the first 24 h (P < 0.0005, 
F = 20 and 101, GLM) reaching an overall pH of 6.7 ± 0.13 
(mean ± SD). 

As shown in Fig. 2d fish sampled at the beginning of the pumping did 
not start onset of rigor mortis until 6 h post mortem, while all crowding 
beyond 5 min resulted in a significant accelerated onset of rigor mortis 
the first 18 h (P < 0.005, Wald chi 11.5: Log linear). 

The results shown in Table 1, indicate that gaping score and blood 
content was significantly affected by freezing (P < 0.0005, Factorial 
ANOVA) and stress (P < 0.05, Factorial ANOVA). There was, however, 
an interaction on the blood content of stressed fish after freezing 
(P < 0.0005, Factorial ANOVA) as the blood is washed out in the brine 
in which it was frozen (Table 1). 

As shown in Fig. 3, the texture hardness was significantly dependent 
(ANCOVA) on fillet thickness (P < 0.0005, F = 15); stress (P < 0.0005; 
F = 18) and whether the fillets were fresh or had been frozen 
(P < 0.0005, F = 32). Similarly, the breaking force was also signifi
cantly dependent on thickness (P < 0.0005, F = 15); stress (P < 0.005; 
F = 10) and whether the fillets were fresh or frozen (P < 0.05, F = 4). 

As shown in Table 2, freezing and thawing in brine made the fillet 

Fig. 1. Scoring (1–3) of Atlantic herring fillets based on appearance.  

Fig. 2. Regression for blood lactate (2a), muscle pH (2b) and rigor measurement (2d) of Atlantic herring crowded for 0–30 min. For graphs on rigor and pH, the time 
of crowding was categorized into 0–5, 5–15 and 15–30 min. Fig. c is correlation matrix between blood lactate and muscle pH. 
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color significantly more white and less red (P < 0.05, Factorial ANOVA), 
than what was seen prior to freezing, and the frozen stressed fish were 
significantly more red (a*) and less yellow (b*) (P < 0.05, Factorial 
ANOVA), than the frozen and unstressed fish. 

4. Discussion 

In accordance with others (Anders et al., 2020, 2019a; Olsen et al., 
2012; Tenningen et al., 2012), crowding densities within the purse seine 
resulted in anaerobic muscle activity followed by an increase of blood 
lactate (Fig. 2). The crowding densities and crowding duration within a 
catch may vary according to both the size of the catch and the size of 
purse seine itself (Tenningen et al., 2019). In order to pump the fish 
onboard the vessel, densities above 200 kg/m3 is common both for 
fisheries and aquaculture industry (Erikson et al., 2016; Lerfall et al., 
2015; Lockwood et al., 1983). 

As demonstrated by Tenningen et al. (2012), crowding densities 
above 400 kg/m3 resulted in drop of oxygen levels to below 50–60%, 
followed by hypoxia and accumulation of plasma lactate (4–8 mmol/L), 
all within 10 min. Comparing this against a commercial operation 
(Fig. 2) suggest conditions similar to Tenningen et al. (2012), although 
fish in this study were crowded up to 30 min 

Table 1 
Average (SE) gaping, blood and quality score of fillets from stressed or unstressed herring as fresh and frozen fillets.  

Treatment  Gaping Blood Quality score n   

Mean SE Mean SE Mean SE  

Fresh Control  1.04  0.04  0.40  0.13  1.08  0.06  25  
Stress  1.12  0.07  1.24  0.14  1.04  0.04  25 

Frozen Control  1.38  0.11  0.35  0.12  1.19  0.08  25  
Stress  1.75  0.14  0.29  0.09  2.00  0.09  25 

Fresh vs Frozen P < 0.005 P < 0.0005 P < 0.0005  
Control vs Stress P < 0.05 P < 0.005 P < 0.0005  
Interaction P > 0.14 P < 0.005 P < 0.0005  

In each column the statistical output from Factorial ANOVA. 

Fig. 3. Hardness measured as newton (N) of fillets from control or stressed fish before and after freezing. Values provided is mean ± SE. Different asterisk (a,b,c) 
represent difference in hardness, while (x,y,z) for breaking force with significant difference of * P < 0.05, ** P < 0.005, *** P < 0.0005. 

Table 2 
Fillet colour (CIE L*a*b*) measured in stressed and unstressed herring as fresh 
and frozen fillets.  

Colour Fresh Frozen  

Stress 
(n = 96) 

Control 
(n = 100) 

Stress 
(n = 100) 

Control 
(n = 100) 

L* 53.2a 6,3 53.3a  5.6 62.2b  7.2 61.2b  6.3 
a* 14.3a 3,6 14.3a  3.2 13.2b  2.4 11.3c  1.4 
b* 9.6a 2,9 10.5a  2.7 12.9b  2.9 14.8c  2.9 

In each row Different asterisk (a,b,c) represent a significant difference of 
P < 0.05 using Factorial ANOVA. 
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Commercial crowding conditions prior to pumping could result in 
30–50% mortality (Tenningen et al., 2012) and plasma lactate levels up 
to 11 mmol/L have been reported in moribund herring (Olsen et al., 
2012). In direct comparison to Atlantic herring, Atlantic mackerel is 
capable of fully exhausting itself during crowding reaching 
> 20 mmol/L of lactate (Anders et al., 2020). Crowding mackerel under 
similar conditions as the herring also resulted in higher lactate levels, 
approximately 11 mmol/L (Anders et al., 2020). Apparently, there are 
some specie differences as to how the animals respond to the crowding 
conditions and a hypoxic environment. One common response is an 
increase in primary and secondary stress responses that increases with 
the time of crowding (Anders et al., 2019a; Marcalo et al., 2006; Ten
ningen et al., 2012). Besides disrupting the animal’s physiological ho
meostasis, the animal will also deplete its energy reserves over time 
causing lactate accumulation in the muscle and an early onset of rigor 
mortis (Sone et al., 2019). 

Previous studies on mackerel show that the muscle pH at time of 
death will be as low as 6.5, where the muscle is in rigor already at time of 
death (Anders et al., 2020). Unlike mackerel, herring crowded for 
30 min did not reach pH below 6.9 and maximum rigor until 9–12 h post 
mortem (Fig. 2). Most studies on both farmed and pelagic fish species 
show that completely exhausted animals will reach maximum rigor as 
early as 2 h post mortem (Anders et al., 2020, 2019b; Daskalova, 2019; 
Lerfall et al., 2015; Sone et al., 2019), indicating that the herring in this 
study was not particularly exhausted at time of death. 

With respect to fillet quality it is well established that the pre mortem 
struggle can have negative effect on most fish species such as Atlantic 
cod (Erikson et al., 2011; Svalheim et al., 2020) as well as for pelagic 
species (Anders et al., 2020; Ando et al., 2001; Digre et al., 2016; Sone 
et al., 2019). Herring is no exception. As shown in Table 1 and Fig. 3, the 
stress associated with crowding resulted in more blood in the fillets, 
higher gaping scores, softer texture and lower quality grading scores. 
More recent studies on Atlantic cod under controlled conditions do show 
that the stress associated with crowding leads to distribution of blood to 
the muscle, thus increasing redness with time (Svalheim et al., 2020). 
Similarly, a vast pH drop can be related to the fact that the drop in 
muscle pH triggers autolysis and biochemical and physical degradation 
of the muscle (Ando et al., 2001; Bahuaud et al., 2010; Sato et al., 2002; 
Sone et al., 2019). Even more interesting is that the quality of the fish 
which is exposed to a prolonged period of stress deteriorates even 
further after freezing and thawing as compared to the control group. 
During freezing the formation of ice crystals within the muscle will cause 
damage to the muscle structure and cells (James et al., 2015; Li et al., 
2018). Thawing is however also crucial point as one risks melting and re 
crystallization of water within the fillet while the temperature fluctu
ates. In this aspect the structure of the cells along with how the water 
migrate is of importance to avoid damage during freezing and thawing 
(Li et al., 2018). It can be assumed that an increased post mortem 
degradation is caused by stress and a subsequent loss of water and of 
water holding capacity (Anders et al., 2020) will enhance even further 
crystallization and migration during freezing and thawing. 

Although capturing pelagic species will result in stress responses, the 
question rises as to what degree the welfare of the animal is compro
mised under commercial conditions? As demonstrated by Lockwood 
et al. (1983), the cumulative mortality of mackerel is a function of 
crowding densities and the duration of the crowding itself. The effect of 
crowding on the fish wellbeing is a sum of variables such as size of the 
catch, environmental conditions, choice of capturing methods and 
schooling behavior (Anders et al., 2019a; Breen et al., 2012; Marçalo 
et al., 2019; Sone et al., 2019; Tenningen et al., 2019, 2012). In this case 
the animal is captured for food and not slipped, meaning that crowding 
densities is going to remain high over longer periods of time, thus 
exposing the animal for higher risks for hypoxia. Based on the results 
shown in Fig. 2, the herring did express anaerobic muscle activity, but 
not sufficiently severe for the animals to deplete their energy reserves as 
rapidly as was seen in the case of mackerel (Anders et al., 2020). Besides 

specie differences, one possible explanation could be related to the high 
pumping capacity of the modern vessels. Lockwood et al. (1983) re
ported the pumping capacity of the vessels to be approximately 100–150 
tons/h with crowding densities around 1000 fish/m3. In contrast, this 
study used pumps with capacity around 800–1000 tons/h. A new study 
on a large slaughter vessel for Atlantic salmon (Chan et al., 2020), shows 
that a high pumping capacity combined with good crowding conditions, 
allows the vessel to keep salmon at lower densities, with minor effects on 
lactate levels (1.7 mmol/L) and pre rigor times (< 24 h) after 5 h of 
crowding and pumping. Although the biomass of fish handled in a cage 
or purse seine are very much similar, the responses in herring in this 
study was more severe (Fig. 2) as compared to salmonids (Chan et al., 
2020) and also Atlantic cod (Svalheim et al., 2020). Considering that this 
study did consist of rather small schools of fish caught, questions arise as 
to how welfare is affected when the catches are 3 folds the largest catch 
of this study. 

The commercial handling of pelagic species is quite different than 
that of farmed fish. Farmed fish are stunned unconscious and killed 
during slaughter (Lines and Spence, 2014; van de Vis et al., 2003). 
Methods for stunning pelagic species are however under investigation 
(Anders et al., 2019b; Nordgreen et al., 2008) and becoming adopted in 
a range of various types of fishing vessels (Erikson et al., 2016, 2021; 
Lambooij et al., 2013, 2012). This combined with results in this inves
tigation provides some optimism for the future with respect to capturing 
herring and improving both its wellbeing and quality. 

5. Conclusion 

We conclude that herring respond with stress during crowding 
expressing anaerobic metabolism, increasing with increasing time. This 
does have consequences for the meat quality, leading to softer texture 
and more pronounced gaping of fresh fillets. Freezing and thawing ac
celerates the deterioration even further. Obtaining good welfare prac
tices for handling and killing herring in the future will enhance more 
sustainable food in the future. 
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