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A B S T R A C T

In analytical chemistry, multivariate calibration is applied when substituting a time-consuming reference mea-
surement (based on e.g. chromatography) with a high-throughput measurement (based on e.g. vibrational
spectroscopy). An average error term, of the response variable, is often used to evaluate the performance of a
calibration model. However, indirect relationships, between the response and explanatory variables, may be used
for calibration. In such cases, model validity cannot necessarily be determined solely by the average error term.
One should also consider the use of the models, as well as the validity of the indirect relationships in future
samples. If the analyte of interest is partly quantified from signals of interfering compounds, then these interfering
compounds will play a hidden role in the calibration. This hidden role may affect future use of the calibration
model as strong covariance relationships between analyte estimates and interfering compounds may be imposed.
Hence, such model cannot detect changes in the relationship between the analyte and interfering compounds. The
problem is called the cage of covariance. This paper discusses the concept cage of covariance and possible conse-
quences of applying models exposed to this issue.
1. Introduction

The desire to rapidly extract large amounts of sample information is
natural. Unfortunately, this desire has recently led to misuse of vibra-
tional spectroscopy returning misleading results. Several studies have
investigated the possibilities of applying vibrational spectroscopy to ac-
quire detailed sample information, which, normally, is only available
through advanced chromatographic separation techniques. Examples
from food research are e.g. prediction of fatty acid (FA) composition in
bovine milk [1] or determination of biochemical quality parameters in
fermented cocoa [2]. In both studies [1,2], more than 30 response vari-
ables (reference variables) were estimated from the explanatory vari-
ables (spectroscopic measurements). In such cases, it is relevant to ask
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whether these multiple response variables are estimated independently
of one another, or whether the response variables are estimated from
identical chemical features in the spectroscopic measurements.

The purpose of establishing a calibration model is to use the model
(instead of performing reference analysis) in the future. Normally, it is
preferable that calibration models are based on direct relationships be-
tween the response variables and the explanatory variables, but it is
important to underline that linear regression models represent only
covariance relationships. Hence, non-causal relationships may be used to
fit regression models.

In the case where multiple response variables have a large amount of
variation in common (i.e. high covariance), and this common variation
also linearly relates to the explanatory variables, then regression models
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(regressing the individual responses onto the explanatory variables) may
appear good at first glance (small errors). However, if it is solely the
variation, which the response variables have in common that is explained
by the models, linear dependencies will be forced among the predicted
response variables. Consequently, the covariance among the predicted
response variables will be higher than the covariance among the true
response variables. These altered covariance structures, among the pre-
dicted response variables, are conserved by the regression models. When
applying the models to future data sets, predictions will forever be
trapped in a cage of covariance and will be linearly dependent of each
other [3–5]. This may compromise calibration robustness, validity and
for sure interpretation [3].

Intercorrelations (biological, chemical or technical) may exist be-
tween response variables and (consistently) lead to very high correlations
and excellent predictions even under the strictest validation criteria. This
may be called the cage of biological covariance. If two response variables
are predicted from the same feature in the explanatory variables, the
models may be useful if the relationship between the two response var-
iables stays the same (i.e. the cage of biological covariance is conserved).
However, it is important to be aware that the response variables as such
do not independently relate to the observed explanatory variables.
Therefore, models solely provide information on how the two response
variables are similar in the calibration data. The information on how the
two response variables differ from each other is not retained by the
models. Hence, this information is lost. This is true also for future
predictions.

This is very problematic if predictions are to be used in e.g. an opti-
mization. Consider for instance a breeding program, which aims at
breeding cows producing milk with a given ratio between two different
FAs. If the FA predictions, estimated from e.g. spectroscopic measure-
ments, depend on each other, it will be impossible to use these pre-
dictions in a breeding program pursuing to alter the covariance of the two
FAs [3,4]. This will be demonstrated, for the example, in the Results and
Discussion section.

To visualize the cage of covariance, we use three data sets as examples.
The data sets consist of near-infrared (NIR) or mid-infrared (MIR) spec-
troscopic measurements as explanatory variables and individual FAs as
response variables. Individual FAs will absorb both NIR and MIR radia-
tion. However, the signals are almost identical and in a complex sample
matrix it will, in practice, be very hard to extract unique spectral features
of the individual FAs. Nevertheless, quantities of the individual FAs co-
vary and the individual FAs can therefore be predicted from spectral
features associated with total fat content [4].

In such situation, the subspace of the spectroscopic measurements,
used for prediction, is relative low rank whereas the matrix containing
the FAs is regarded full rank, but with high covariance between indi-
vidual FAs. We show how individual FAs are predicted with relatively
small errors, while the predictions of the different FAs are not indepen-
dent of each other. Hence, if applying the model in the future to obtain
predictions of a given FA, then other FAs will play a hidden role in that
prediction. This phenomenon is called the cage of covariance. This paper
discusses the cage of covariance in detail as well as the possible conse-
quences of applying models exposed to the cage of covariance.

2. Background

In a classical least squares perspective, spectroscopic measurements,
Xðn � mÞ, of multi-component samples are viewed as the outer product
of the component concentration profiles, Cðn � qÞ, the pure component
signals at unitary concentration, Sðm � qÞ, and an error term, Eðn � mÞ,
where n is the number of samples,m is the number of measured variables
and q is the number of chemical components. This is formalized in
Equation (1).

X¼CST þ E Equation 1
2

In X, the number of linearly independent columns is equal to the
number of linearly independent rows and this number determines the
rank of X, rðXÞ. Due to measurement noise, the mathematical rank may
be close to full. However, the chemical rank is determined by q, given
that q � minðn;mÞ and rðCÞ ¼ rðSÞ ¼ q. Independent information of the
q components is not directly available from X if rðXÞ < q.

Say, a high number, k, of response variables, Yðn � kÞ, are regressed
onto X (i.e. through k individually fitted regression models). This would
return k individual regression vectors, bBðm � kÞ, and the estimate of Y,
bYðn�kÞ is given by Equation (2). Columns of X and Y are assumed
centered around zero.

bY ¼XbB Equation 2

It may be hard to determine whether response variables are predicted

independent of each other (rðbYÞ ¼ k) and through direct relationships
with X. An obvious prerequisite for this is that Y has full rank (rðYÞ ¼ k).

If rðYÞ < k, columns of Y are linearly dependent and so are columns of bY ,
i.e. rðbYÞ < k.

Furthermore, for the k response variables to be estimated indepen-
dently of one another, the individual regression vectors (i.e. columns of
bB) must each describe unique features (directions) in the row space of X.
In fact, the regression vector for a given response variable should
describe the part of the response’ signal that is orthogonal to all other
signals in X (first-order calibration) [6,7]. In principle, an infinite num-
ber of regression models may be fitted to X. However, rðXÞ determines
the number of independent directions in the X-space, and thereby de-
termines the number of independent regression models that possibly can

be fitted using X as explanatory variables. As shown in Equation (2), bY is
a linear combination of X. Therefore, bY will always be in the X-space and
independent estimates of k response variables cannot be based on
explanatory variables, which total a rank less than k.

Moreover, when extracting information from X the signal-to-noise
ratio is important. This is especially true when q is high and columns
of C and/or S covary calling for complex partial least squares (PLS)
regression models fitted with many latent variables. Before estimating a
new latent variable, X is deflated by the variation explained by the pre-
vious latent variable [8]. This will deteriorate the signal-to-noise ratio of
the data and subsequent latent variables are estimated with larger un-
certainties. For complex data with a poor signal-to-noise ratio, this may
result in underfitted PLS regression models. A regression vector from an
underfitted PLS regression model may not be orthogonal to the signals of
all interfering compounds. Therefore, analyte predictions will partly
depend on signals from interfering compounds. This will, in turn, force
linear dependencies among the predictions of the analyte and interfering
compounds. Hence, future predictions are (forever) trapped in a cage of
covariance. This may compromise calibration robustness and validity.

3. Materials and methods

3.1. Bovine milk samples

Eight hundred ninety milk samples from individual Jersey and Hol-
stein cows were included. Mid-infrared measurements were obtained
using MilkoScan FT2 (Foss Analytical A/S, Hillerød, Denmark). The
spectroscopic measurements originated from Eskildsen et al. (2014) [4].
Each sample was measured in triplicates and the average spectrum was
used for further analysis. The spectral regions from 2,968 cm�1 to 2,802
cm�1, 1,773 cm�1 to 1,692 cm�1 and 1,604 cm�1 to 925 cm�1 were
included [4].

In order to approximately obey Beer’s law, the MIR spectra were
transformed from transmittance (T) units to absorbance (A � log(1/T))
and preprocessed by Savitzky-Golay [9,10] first derivative (window size
of 9 points and second-order polynomial), as suggested by Eskildsen et al.
(2014) [4].
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As response variables, FAs (k ¼ 12) were quantified by gas chroma-
tography of FA methyl esters (GC-FAME) as described by Poulsen et al.
(2012) [11]. All FAs were expressed in units of g of FA/100 g of milk. For
a comprehensive sample description, see Poulsen et al. (2012) [11].
Furthermore, total fat, protein and lactose content were quantified using
MilkoScan FT2 and the commercial calibration models (FOSS Analytical
A/S, Hillerød, Denmark). Hence, total fat, protein and lactose were linear
combinations of the MIR spectra. To create a more realistic relationship
between the MIR spectra and these three response variables, white
Gaussian noise was added to the observed values,yobs, of total fat, protein
and lactose (Equation (3)).

y¼ yobs þ Δy;ΔyeN�0; 0:1 � var�yobs�� Equation 3

3.2. Atlantic salmon muscle samples

Six hundred sixty-three samples from the Norwegian Quality Cut of
the filets obtained from individual Atlantic salmon of the SalmoBreed
population were included. Atlantic salmon samples originated from Horn
et al. (2018) [12]. The samples were homogenized and measured in mini
sample cups (FOSS Analytical A/S, Hillerød, Denmark) using FOSS NIR
Systems XDS Rapid Content™ Analyzer (FOSS Analytical A/S, Hillerød,
Denmark). The NIR measurements were obtained in reflectance mode
with 32 scans per spectrum. Samples were measured in triplicates and the
average spectrum was used for further analysis. An internal ceramic
standard was used as reference. The spectral range was from 1,100 nm to
2,500 nm. In order to approximately obey Beer’s law, the NIR spectra
were transformed from reflectance (R) units to absorbance (A �
log(1/R)) and preprocessed using extended multiplicative signal
correction (EMSC) [13,14]. The EMSC was performed using the mean
spectrum and a second-order polynomial as suggested by Eskildsen et al.
(2019) [7].

As response variables, 22 FAs (k ¼ 22) were quantified using GC-
FAME as described by Horn et al. (2018) [12]. Total fat was quantified
as stated in Horn et al. (2018) [12] and all FAs were expressed in units of
g of FA/100 g muscle. For a comprehensive sample description, see Horn
et al. (2018) [12].
3.3. Pork samples

One hundred slaughter pig carcasses from an industrial abattoir
(Danish Crown, Herning, Denmark) were included. Approximately 30
min after slaughter, each carcass was measured with the NitFom™ device
(Frontmatec A/S, Smørum, Denmark) to obtain transmission measure-
ments of the subcutaneous fat layer. The measurements were made in the
neck region of the back fat next to the shoulder blade – approximately 7
cm from the split line. The NitFom™ consisted of stainless-steel twin-
probes mounted in a probe house and spaced by 2 mm [15]. Each probe
was knife-tipped and designed to penetrate 3 cm into the carcass through
the skin. Optical fibers connected the emitter probe to a light source
while the receiver probe was connected to a NIR-spectrometer. The two
probes have windows facing each other allowing light to be transmitted
through the adipose tissue. As the probe head was ejecting itself from the
carcass, NIR transmission spectra were recorded at several depths. The
spectral range was from 1,100 nm to 1,900 nm. A built-in algorithm
facilitated differentiation of tissue types (meat vs. fat). Only spectra
recorded in adipose tissue were used.

In order to approximately obey Beer’s law, the spectra were trans-
formed from transmittance (T) into absorbance (A � log(1/T)) and pre-
processed using EMSC. The EMSCwas done using themean spectrum and
a second-order polynomial as suggested by Sørensen et al. (2012) [16].

As response variables, FAs (k ¼ 4) were quantified by GC-FAME at
Danish Technological Institute - Danish Meat Research Institute
(Taastrup, Denmark). All FAs were expressed in units of g of FA/100 g of
fat tissue.
3

3.4. Data analysis

Data were analyzed using MATLAB version R2016b (9.1.0.441655,
MathWorks Inc., Natick, MA, USA). Prior to modeling, the spectroscopic
measurements were preprocessed and mean centered. Fatty acids were
mean centered and scaled to unit variance. The non-linear iterative
partial least squares algorithm was used for PLS regression [8,17]. All
PLS models were built with univariate reference values (i.e. y-block). The
number of latent variables included in each PLS model was determined
by a significance test [18] as described in the subsequent paragraph. Only
well predicted FAs are included in this study. A threshold was decided at
60% explained variation (i.e. only FAs with R2 � 0:6 between measured
and predicted FA, are included in this study). To investigate the covari-
ance structures in the data sets, data were decomposed by singular value
decomposition (SVD) and the percent explained variation as a function of
number of latent variables was used to determine whether the covariance
structures were altered in the predicted response variables as compared
to the reference values.

3.4.1. Number of latent variables in PLS models
In order to evaluate statistical significance of each individual latent

variable that enters the PLS models, the procedure proposed by Wiklund
et al. (2007) was used [18]. In short, a PLS model is fitted between X and
y and the test statistics is calculated as the covariance between the scores
of the latent variable and the y-values. Then the null-distribution (i.e. the
distribution that holds when the latent variable is not significant) is
created by permuting y. A PLS model is fitted between X and the
permuted y and the test statistics is calculated. This is repeated 500 times
to create the null-distribution. The critical value is derived as the value
exceeded by 5% of the values in the null-distribution. Finally, the test
statistics obtained for the original data is compared to the critical value,
to evaluate whether the latent variable is significant or not. Both X and y
are deflated before evaluating the subsequent latent variable. See
Wiklund et al. (2007) for comprehensive description and computational
details [18].

4. Results and discussions

Fig. 1 presents the preprocessed spectral data of the three datasets.
The MIR spectra obtained on bovine milk (Fig. 1A) primarily contain
information on fat, protein and carbohydrates since the strong water
band regions are excluded [3,4,19]. The NIR spectra obtained on Atlantic
salmon muscle (Fig. 1B) primarily contain information on water, protein
and fat. The NIR spectra obtained on the porcine adipose tissue (Fig. 1C)
primarily contain information on fat and water [20].

Total fat, protein and lactose content are known to be well predicted
from MIR measurements obtained on milk [19]. This is also found in this
study. Table S1 (Supporting Information) presents the descriptive sta-
tistics for total fat, protein and lactose in bovine milk and Table S2
(Supporting Information) presents the results from PLS models of the
milk data for total fat, protein and lactose. Total fat, protein and lactose
give rise to distinct spectral features in the MIR spectra [19]. Therefore,
these parameters may be estimated independent of each other (even
though total fat and protein content are fairly correlated in this present
bovine milk data [3]).

Fig. 2 presents a heat map showing coefficients of determination (R2)
between total fat, protein and lactose in the milk dataset. The R2-values
between columns of Y are presented below the diagonal, whereas R2-

values between bY are presented above the diagonal. The R2-values be-
tween reference and predicted values (i.e. explained variation of the
regression models, also presented in Supporting Information, Table S2)
are on the diagonal. Fig. 2 shows that the correlation structures in Y is not

altered in bY . Hence, total fat, protein and lactose are estimated inde-
pendent of each other from different chemical bases in the MIR
measurements.



Fig. 1. Preprocessed spectral measurements. A) Bovine milk, B) Atlantic salmon muscle, C) Porcine adipose tissue. R ¼ reflection, T ¼ transmission.

Fig. 2. Heat map showing coefficients of determination (R2) between total fat,
protein and lactose. Below the diagonal: R2 between reference values. On the
diagonal: R2 between reference and predicted values. Above the diagonal: R2

between predicted values. Data originate from the bovine milk data set.

Fig. 3. Cumulative % explained variation as a function of latent variables
included in the model. Singular value decomposition performed on matrices
containing total fat, protein and lactose (Y) and the predicted total content of

fat, protein and lactose (bY). Data originate from the bovine milk data set.
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This observation is confirmed in Fig. 3, which shows the results from
SVD of total fat, protein and lactose (milk data set). The SVD is performed
on the reference values, Y and the predicted values of total fat, protein

and lactose, bY . Fig. 3 shows that columns of Y are correlated. The first
latent variable describes approximately 70% of the total variation in Y.

The SVD of bY reveals that the covariance structures of bY are very similar
to the covariance structures of Y, as the individual latent variables
approximately describe the same amount of relative variation. This in-
dicates that total fat, protein and lactose are estimated independent of
one another. Hence, predictions are not trapped in the cage of covariance.
The total explained variation and the covariance structures in Y and bY
are directly comparable. Therefore, the pattern, in Fig. 3, for Y and bY
must be similar if columns of bY independently relate to X.

The descriptive statistics for FAs reference data presented in Table S3
(Supporting Information) and the results from PLS models are presented
4

in Table S4 (Supporting Information). The complexities of individual PLS
models are determined by the permutation procedure described in the
methods section [18]. It was observed that a given PLS latent variable
may appear insignificant, whereas successive latent variables are signif-
icant. Nevertheless, PLS models are fitted with a complexity corre-
sponding to the last significant latent variable (i.e. all successive latent
variables are insignificant). In this way, under-fitting the PLS models is
avoided. Under-fitting the individual PLS models may decrease rðbYÞ and
thereby force a severe cage of covariance among the predicted FAs (i.e.

columns of bY ). On the other hand, over-fitting the individual PLS models
may include random noise in bY and thereby increase rðbYÞ making it

difficult to detect a possible cage of covariance among the columns of bY .
However, in this study the risk of over-fitting the PLS models (by
including insignificant latent variables) is accepted in order to be confi-
dent that the models are not under-fitted. Therefore, a high number of
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latent variables are included in the models (Supporting Information,
Table S4) as compared to e.g. the PLS models in Eskildsen et al. (2014)
[4]. In general, calibration models are fitted with the purpose of pre-
dicting external samples. This purpose is clearly compromised when
over-fitting the models. Therefore, prediction errors presented in
Table S4 are likely to be optimistic.

At first glance, FAs, presented in Table S4 (Supporting Information),
appear to be well predicted. In general, we observe better predictions of
FAs with higher variation. Examples from the Atlantic salmon muscle
data set are C16:0 and C18:1n9. Vibrational spectroscopy is generally
sensitive to functional groups, but cannot be used to distinguish between
molecular species with similar functional groups (i.e. methine, methy-
lene, methyl, carbonyl, C––C). It is thus not possible to distinguish be-
tween FA species in a complexmixture. Hence, the FA predictions depend
on how well FA quantities covaries with the spectral features of the
functional groups. The FAs with higher variation will dominate the ratio
changes of the functional groups and thereby also the variation of the
spectral features associated with these groups. Therefore, those FAs are
likely to be better predicted.

Fig. 4 presents heat maps showing R2 between the individual FAs of
the three datasets. Fig. 4A presents the bovine milk data, Fig. 4B presents
the Atlantic salmon data and Fig. 4C presents the porcine adipose tissue
data. The R2-values between reference FAs (Y) are presented below the

diagonal, whereas R2-values among the predicted FAs (bY) are presented
above the diagonal. The R2-values between reference and predicted FAs
(i.e. explained variation of the regression models, also presented in
Supporting Information, Table S4) are on the diagonal.

For all three data sets, the covariances among predicted FAs is higher
than the covariances between reference FAs. This is seen as more dark-
colored pixels above the diagonals as compared to below the diagonals
in the heat maps (Fig. 4). This indicates that the FAs are (partly) pre-
dicted from the same chemical features in X. Linear dependencies are

therefore imposed among columns of bY and FAs are not predicted
independently of each other.

This is also confirmed in Fig. 5, which shows the results from singular
value decomposition of Y (i.e. reference FAs) and bY (i.e. predicted FAs) in
the bovine milk data (Fig. 5A), the Atlantic salmon muscle data (Fig. 5B)
and the porcine adipose tissue data (Fig. 5C). In all three data sets, the
first latent variable explains a substantial amount of the total variation in
Y. This is expected, as the FAs are highly collinear. However, for all three
data sets, the first latent variable explains a substantial higher amount of

variation when decomposing bY . Hence, the covariance structures are
stronger in bY than in Y. This indicates that the individual PLS models,
predicting individual FAs, are largely using the same information in the
spectral data. Hence, the PLS models will impose stronger covariance
structures among the FAs as compared to what is the actual case. These
stronger covariance relationships are conserved by the models. There-
fore, future predictions will always be trapped in this cage of covariance.

The PLS regression models do not relate the FAs to unique spectral
Fig. 4. Heat map showing coefficients of determination (R2) between the fatty acids
reference and predicted values. Above the diagonal: R2 between predicted values. A

5

information. Therefore, the predictions largely contain information on
how the FAs are similar. Information on how the FAs differ from each
other, is not preserved by the models. The calibration models provide
information on how the FAs covaries in the calibration set. Hence, if the
covariance structures among the FAs changes in a future dataset, this will
not be reflected by the predictions. The covariance structures among
future predictions will largely be the same as the covariance structures
among the predictions in the calibration set - the cage of covariance. This
is a consequence of calibrating regression models on non-causal re-
lationships. Even though the FAs are reasonably well predicted (Sup-
porting Information, Table S4), the linear dependencies imposed among

columns of bY may be problematic when the regression models are used to
explore future indeoendent data sets.

Imagine, for example, a breeding program aiming at altering the ratio
of FAs C14:0 to C6:0 in bovine milk. Both C6:0 and C14:0 appears to be
well predicted from the regression models applied to MIR spectra of
bovine milk (Fig. 6A and B, respectively, and Table S4). One is interested
in identifying cows producing milk with a higher C14:0 to C6:0 ratio.
From the GC-FAME measurements (Fig. 6C), which are not exposed to
cage of covariance, three milk samples are marked (ID 68, 757 and 762) as
examples. These three samples are among the samples with a higher
C14:0 to C6:0 ratio and are therefore interesting in the imaginary
breeding program. However, if we substitute the GC-FAME measure-
ments with MIR spectroscopy, due to the cage of covariance conserved by
the regression models, the three samples are no longer identified as
samples with a higher C14:0 to C6:0 ratio (Fig. 6D). In fact, ID 757 will be
identified as samples with a C14:0 to C6:0 ratio below average. Hence, FA
estimates fromMIRmeasurements are of very limited use in the breeding
program, as they simply do not provide the information that is sought for.

In this paper we use PLS with univariate reference values (i.e.
y-block). The cage of covariance problem seems to be inherent in the data
and cannot necessarily be solved with other regression methods. We also
applied PLS2 with multivariate reference values (i.e. Y-block) to the data
presented. However, it appears that PLS2 also impose the cage of
covariance problem (results not shown). The reason is that in PLS2 theY-
variables are modeled by the same latent variables, which aim at
explaining common variation among the Y-variables.

5. Conclusions

This study shows the importance of considering the rank of the sub-
space of explanatory variables used for prediction, the covariance
structures of response variables as well as their estimates when regressing
multiple response variables (e.g. FAs) onto the same explanatory vari-
ables (e.g. spectroscopic measurements). This study estimates multiple
response variables from a lower rank subspace of explanatory variables.
At first glance, when evaluated by e.g. percent explained variation, the
response variables seem to be well predicted. Nevertheless, the covari-
ance structures between the estimated response variables are higher than
that of the true response variables. This is due to the fact that predicted
. Below the diagonal: R2 between reference values. On the diagonal: R2 between
) Bovine milk, B) Atlantic salmon muscle, C) Porcine adipose tissue.



Fig. 5. Cumulative % explained variation as a function of latent variables included in the model. Singular value decomposition performed on matrices containing the

reference fatty acidss (Y) and the predicted fatty acids (bY ), respectively. A) Bovine milk, B) Atlantic salmon muscle, C) Porcine adipose tissue.

Fig. 6. Predictions (bovine milk data) exposed to the cage of covariance. A) Predicted versus measured values of C6:0. B) Predicted versus measured values of C14:0. C)
Measured C14:0 versus measured C6:0. D) Predicted C14:0 versus predicted C6:0.
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response variables are located in a common lower rank subspace of the
explanatory variables. Even though the true response variables are
viewed as independent of each other, the predicted response variables
cannot be viewed as independent, as they depend on the common lower
rank subspace of the explanatory variables. Hence, the predictions are
not based on chemical information directly associated with the individ-
ual responses. This may compromise the validity and robustness of the
calibration models, as the predicted responses are caught in a cage of
covariance with each other. This may lead to serious misinterpretation of
6

the studied system if estimated responses are used for optimization
purposes, where the target is to break the cage of biological covariance, like
in breeding programs. This is of fundamental importance as it reduces the
chance for new discoveries. In this paper, we discussed the problems of
calibrating regression models on non-causal relationships in the case of
multiple response variables. However, the problems caused by non-
causal relationships are obviously also present in the case where only
one response variable is predicted.
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