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Contamination of food products with the foodborne pathogen

Listeria monocytogenes may occur in the food processing

environment. Many bacterial species co-exist in this

environment and can interact in multispecies biofilms. Recent

studies have shed light on the composition of microbial

communities present in the same ecological habitat as L.

monocytogenes. Others have aimed at identifying competitive

or cooperative interactions between L. monocytogenes and

other species in mixed-species biofilms. Both microbial

composition and interactions may be differently influenced

even by different strains belonging to the same species. Novel

methodology based on recent advances in sequencing

technologies promise to provide new insights into how the

resident microbiota may influence the presence of L.

monocytogenes in food industry environments.
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Introduction
A serious problem in the food industry is the presence of

microbial biofilms that can harbour and transmit spoilage

and pathogenic bacteria [1]. These biofilms often remain

on surfaces after regular cleaning and disinfection. For the

pathogen Listeria monocytogenes, the most common route

of transfer to food products is through cross-contamina-

tion from surfaces in food processing plants [2,3]. Several

recent large outbreaks of listeriosis have been traced back

to L. monocytogenes strains persisting over extended per-

iods of time in food processing environments [4,5], where

they – like most bacteria in natural or human-made

environments – are likely to reside within biofilm com-

munities. However, perhaps unexpectedly, the capability
www.sciencedirect.com 
of L. monocytogenes strains to form monospecies biofilms

does not seem to be a key factor determining their ability

to persist in food processing facilities [6��,7].

The resident microbiota in food processing plants can

influence the growth of L. monocytogenes. In multispecies

biofilms, interactions can be competitive, when L. mono-
cytogenes is suppressed by other microorganisms; coopera-
tive, when proliferation and survival of L. monocytogenes in

biofilms are increased; or neutral [8–10]. Both the compo-

sition of the resident microbiota, the growth of L. mono-
cytogenes, and interactions within biofilms are affected by

environmental factors, such as the nature of raw materials,

nutrient availability, temperature, humidity, pH, surface

materials and roughness, and cleaning and disinfection

(C&D) regimes [11,12]. Multispecies biofilms can pro-

vide stable niches for L. monocytogenes, where the encasing

extracellular matrix can shelter cells and protect them

from biocides and other stresses. The difficulties posed

by biofilms in food industry are reflected in the large

number of recent reviews concerning the use and effect of

methods to control microbial biofilms in food related

environments [1,10,13�,14–20]. Further knowledge of

the microbial ecology of biofilms in specific food proces-

sing environments can increase our understanding of

persistence of pathogens such as L. monocytogenes, ulti-

mately improving our ability to manage food safety.

The current review focuses on recent advances regarding

the composition and diversity of resident microbiota in

food processing facilities known to harbour L.
monocytogenes. It will also summarize the current under-

standing of how the resident microbiota found in food

processing environments may influence L. monocytogenes
in biofilms. We also highlight the potential of genomics

technologies and other novel approaches for understand-

ing these communities.

Microbial diversity in the food industry
In our previous review of the microbial diversity of

resident microorganisms on cleaned surfaces in the food

industry [12], we found that, overall, the microbiota was

dominated by Gram-negative bacteria such as Pseudomo-
nas, Acinetobacter, Enterobacteriaceae, Psychrobacter, and Ste-
notrophomonas, especially in industries with a humid

production environment, such as fish, meat, and fresh

produce processing plants. Gram-positive bacteria were

more prevalent in dairy and dry production environments,
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with lactic acid bacteria, Staphylococcus, and Bacillus as the

most commonly found groups. Recent literature in gen-

eral supports the major conclusions of the review [21–

25,26�]. Some of the studies [23,26�] highlight the preva-

lence of yeast and moulds on surfaces. These eukaryotic

microorganisms are reported in some studies [12] but are

often not investigated, as they are not detected in anal-

yses based on sequencing of 16S rRNA.

Microbial communities harbouring L.
monocytogenes
L. monocytogenes is frequently isolated from the food

industry, although it is always outnumbered by other

types of bacteria, and selective enrichment is in most

cases needed for environmental detection. In a study of L.
monocytogenes positive surfaces in meat, fish, and dairy

processing plants, sampled before C&D [24], the total

psychrotrophic count was 5–9 log CFU/cm2, while L.
monocytogenes was present in concentrations of 2–4 log

CFU/cm2 in samples where it could be quantitatively

detected (9 out of 40 positive samples); on the majority of

the surfaces the concentrations were lower.

Table 1 lists the studies (2014–2020) in which both

analysis of the microbiota and detection of L. monocyto-
genes were performed for the same surface or sample

[9,23–25,26�,27–31], providing insights into which types

of bacteria are found with L. monocytogenes in the food

industry. In general, these bacteria are the same as those

that usually dominate in food industrial environments

(Table 1). Rodrı́guez-López et al. [24] found that Acti-

nobacteria was the most prevalent phylum (53%) found

on the same surface as L. monocytogenes in the meat

industry, while Proteobacteria dominated at such sites

in fish (97%) and dairy plants (69%). In a study of three

fruit processing plants [26�], the processing plant with the

highest prevalence (100%) of L. monocytogenes positive

surfaces was uniquely dominated by the bacteria Pseudo-
monadaceae and the fungi Dipodascaceae. This led to the

conclusion that the composition and diversity of the

bacteriota and mycobiota may be indication of persistent

contamination with L. monocytogenes.

Other studies indicate that specific bacteria may be

associated with low prevalence of L. monocytogenes. Janthi-
nobacterium has been shown to be more prevalent in

Listeria-negative than Listeria-positive drains, and to

inhibit attachment and biofilm formation of L. monocyto-
genes in laboratory studies [9]. In studies of wooden vats

used in cheese production, the presence of a resident

microbiota dominated by the fungus Geotrichum was

shown to inhibit L. monocytogenes [32].

Biofilm interactions involving
L. monocytogenes
Correlative associations between bacteria are not the

same as causal relationships, and need to be confirmed
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by experimentation. A number of studies employing

laboratory tests, and in some cases in situ trials in food

industry, have attempted to determine the nature of the

interactions between L. monocytogenes and other bacteria

within biofilms. For older studies we refer readers to

previous reviews [2,10,15,20,33��], while an overview of

recent papers (2018–2020) is presented in Table 2 [31,34–

41,42�,43,44,45�,46�,47–49].

To study interactions relevant for the behavior of L.
monocytogenes in food industry settings, model systems

should consist of bacteria commonly found together with

L. monocytogenes in biofilms in food industry environments

[50]. Pseudomonas spp. bacteria match this description

(Table 1), thus papers describing mixed-species biofilms

containing L. monocytogenes and Pseudomonas spp. (except

Pseudomonas aeruginosa) [42�,44,45�,46�,51] are highly rel-

evant. The studies show that L. monocytogenes can be

established in biofilms with Pseudomonas, as a minor part

of the total bacterial population. Interestingly, the pres-

ence of L. monocytogenes may induce increased matrix

production in biofilms with Pseudomonas [45�] and L.
monocytogenes can be protected against desiccation and

disinfection [44]. Other microorganisms from food indus-

try environments recently studied in mixed-species bio-

films with L. monocytogenes are Bacillus, lactic acid bacteria,

Escherichia coli, Vibrio, Salmonella, Staphylococcus, and

yeasts [31,34,35,37,38–41,47,48] (see Table 2). However,

not all of these microorganisms are typically co-isolated

with L. monocytogenes in food industry (Table 1), indicat-

ing that they may exist in other ecological niches than L.
monocytogenes in factories. Other studies, examining inter-

actions between L. monocytogenes and other pathogens

such as P. aeruginosa or Salmonella Typhimurium

[36,43,52], have very limited relevance for food industry,

since these pathogens are rarely encountered together in

food industry environments [12].

Both competitive and cooperative interspecies interac-

tions between L. monocytogenes and other bacteria in

biofilms have been described in previous reports. In

recent laboratory studies (Table 2), the most common

finding was that the numbers of L. monocytogenes in

multispecies biofilm were lower than in L. monocytogenes
monospecies biofilms. Inhibition of L. monocytogenes in

dual species biofilms with Bacillus cereus or lactic acid

bacteria has been explained by the production of antago-

nistic compounds [34,39–41]. Bacteriocin-producing lac-

tic acid bacteria are known to be antagonists to Listeria
spp., and have even been proposed to be used as a means

to control biofilms in food production [15]. Whether or not

these strains will thrive in niches where L. monocytogenes is

found is another question.

Effect of environmental factors
Community-intrinsic properties such as direct inhibition

of one bacterium by another can explain some
www.sciencedirect.com
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Table 1

Microbial communities found in L. monocytogenes (Lm) positive environmental sampling points

Microbiome analysis approach Environment Lm positive sampling points analysed Dominant microbiota found in Lm-

positive samples or sampling points

Ref.

Culture independent; microarray

analysis using PhyloChip platform

Meat

production

facility

2 Lm-positive drains; 6 samples from

each drain taken over a 3-day period

Lachnospiraceae, Pseudomonadaceae,

Rikenellaceae,

Enterobacteriaceae. Increased

abundance of Enterococcus and

Rhodococcus associated with presence

of Lm

[9]

Culture based; sequencing of 16S

rRNA from randomly picked

psychrotrophic colonies (grown

at 15�C)

Salmon

processing

plant

1 Lm-positive conveyor belt after C&D Pseudomonas, Brochothrix,

Stenotrophomonas, Serratia

[27]

Culture based; sequencing of 16S

rRNA from morphologically

different colonies (grown at 25�C)

Fish and

seafood

processing

plants

6 Lm-positive samples (gloves, floor,

sewage channels, conveyor belt, scale

lines)

Escherichia coli, Staphylococcus

(saprophyticus, scuri and sp.), Kocuria

varians, Aerococcus viridans,

Microbacterium (luteolum and sp.),

Corynebacterium sp., Enterococcus

aquimarinus, Rothia terrae [28]

Meat

slaughtering

and processing

plants

6 Lm-positive samples (trolley, mincer,

massage drum, drain)

Carnobacterium (divergens and sp.),

Serratia sp., Staphylococcus

(saprophyticus and vitulinus),

Pseudomonas sp., Buttiauxella sp.

Culture independent; construction

and sequencing of a 16S rRNA

gene clone library

Fish sauce and

hoisin/oyster

sauce factories

8 Lm-positive floor drains Pseudomonas ( psychrophila and sp.),

Klebsiella (oxytoca and sp.), Aeromonas

hydrophila

[29]

Culture independent;

pyrosequencing of 16S rRNA

PCR amplicons (V1–V2 regions)

Cheese

production

facility

3 Lm-positive floor drains; samples of

both drain water and biofilm, taken

during production

Pseudomonas mucidolens, Lactococcus

lactis, Acetobacter tropicalis,

Gluconobacter oxydans, Leuconostoc

citreum, Chryseobacterium ureilyticum

[30]

Culture based; sequencing of 16S

rRNA from morphologically

different colonies (grown at 25/

30�C)

Dairy plant 1 Lm-positive floor drain Klebsiella sp., Escherichia coli,

Comamonas sp., Acinetobacter sp.

[31]

Culture independent; sequencing

of 16S rRNA PCR amplicon using

IonTorrent technology

Meat (bovine

and porcine)

slaughterhouse

2 locations (drain, platform/table), each

sampled 7�8 times before C&D; Lm was

not detected on all occasions

Drain: Rhodococcus, Chryseobacterium,

Microbacterium, Acinetobacter,

Athrobacter, Sphingomonas,

Flavobacterium, Rothia,

Pseudoclavibacter; Platform/table:

Corynebacterium, Facklamia,

Jeotgalicoccus, Psychrobacter [24,25]
Fish

processing/

market

1 Lm-positive sump/drain, sampled

4 times before C&D; Lm was not

detected on all occasions

Pseudoalteromonas, Psychrobacter,

Photobacterium, Psychromonas,

Flavobacterium, Carnobacterium

Cheese

production

facility

1 Lm-positive floor sample (under silo),

sampled once before C&D

Acinetobacter, Lactococcus,

Pseudomonas, Shewanella, Yersinia

Culture based; identification of

randomly picked morphologically

different colonies (grown at 30�C)
by biochemical (API) tests

Meat (porcine)

slaughterhouse

and processing

plant

3 locations (tool cabinet, floor,

transportation cart) each sampled

16 times over a 21-month period; Lm

detected on 1�2 occasions in each

sampling point

Pseudomonas, Bacillus, Mannheimia

haemolytica, Enterobacter,

Corynebacterium, Leifsonia,

Leuconostoc mesenteroides, Candida

zeylanoides

[23]

Culture independent; sequencing

of 16S rRNA (V4 domain) and ITS2

PCR amplicons using Illumina

technology

Apple and other

tree fruit

packing houses

3 factories, 3 sampling locations in each

(floor under conveyor system; wash, dry,

and wax sections), 13 samples from

each sampling point; Lm detected in

56% (66/117) of samples

Pseudomonadaceae,

Flavobacteriaceae, Xanthomonadaceae;

Fungal families: Dipodascaceae,

Trichosporonaceae, Aureobasidiaceae

[26�]
phenotypical observations from studies of mixed-species

biofilms. In other studies, however, extrinsic environmen-

tal factors seem to play a greater role. For example,

several studies report that competition for nutrients can

explain the lower counts of L. monocytogenes within bio-

films [42�,44,46�,47–49]. Common for these studies is that
www.sciencedirect.com 
biofilm formation was studied on surfaces (often horizon-

tal) without applied shear forces and in the absence of

flow. In such systems competition for nutrients and

tolerance to inhibitory compounds are likely of higher

importance for the prevalence of a species than the ability

to attach to a surface and to build a strong matrix. An
Current Opinion in Food Science 2021, 37:171–178
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Table 2

Studies reporting on biofilm interactions between L. monocytogenes (Lm) and other microorganisms; 2018–2020

Microbes co-cultured with L.

monocytogenes

Biofilma Strainsb Solid

surfacec
Temp. Culture nutrients Duration of

experiment

Conditions Effectd Ref.

Bacillus cereus DS 3 Lm + 6 SS 25�C BHI 7 days Static �4 to 0 [34]

Escherichia coli DS 1 Lm + 1 SS 25�C BHI, reconstituted

powder milk

60 hours Shear

forces

(15 rpm)

�2 to 0 [35]

Escherichia coli, Salmonella Typhimurium or

Salmonella Enteritidis, Pseudomonas

aeruginosa, Bacillus cereus

MS 1 Lm + 5 SS and

PP

9,

25�C
TSB + eggyolk,

TSB + meat

extract, whole

milk

10 days Static �4 to �2 [36]

Escherichia, Klebsiella, Comamonas,

Acinetobacter

DS, MS 1 Lm + 4 SS 25�C BHI 72 hours Shear

forces

(90 rpm)

DS: 0 to

+1; MS:

<�0.5

[31]

Enterococcus, Staphylococcus, Bacillus MS 3 Lm + 9 SS 25�C BHI, whey protein,

skimmed milk

10 days Static �2 to 0 [37]

Limosilactobacillus (Lactobacillus)

fermentum, Ligilactobacillus

(Lactobacillus) salivarius

DS 1 Lm + 2 Glass 37�C TSB and MRS 72 hours Static �2 to +1 [38]

Lactobacillus delbrueckii subsp. lactis DS 1 Lm + 1 SS 25�C BHIYE 5 days Static �4 [39]

Lactobacillus, Lactiplantibacillus

(Lactobacillus), Latilactobacillus

(Lactobacillus), Leuconostoc

DS 1 Lm + 8 SS, MP,

lettuce

10,

25,

30�C

TSB, water 24 hours Static �2 to �1 [40]

Leuconostoc DS 2 Lm + 3 MP 37�C BHI 24 hours Static �2 to �1 [41]

Listeria innocua, Acinetobacter,

Pseudomonas, Serratia,

Stenotrophomonas

MS 6 Lm +

11

SS 12�C BHI 9 days Static �3 to �2 [42�]

Pseudomonas aeruginosa DS 2 Lm + 1 MP 10,

15�C
Todd-Hewitt broth 14 days Static �1.5 to

�0.5

[43]

Pseudomonas fluorescens DS 1 Lm + 1 SS 15�C TSB 48 hours Static �0.5 to 0 [44]

Pseudomonas fluorescens DS 1 Lm + 1 Glass 20�C TSB 4 days Shear

forces

(80 rpm)

+1 to +2 [45�]

Pseudomonas spp. or bacteria from raw fish

juice

DS, MS 6 Lm +

5 or

unknown

SS 15�C Fish juice (sea

bream)

10 days Static DS: �1 to

0; MS:

�3

[46�]

Vibrio parahaemolyticus DS 2 Lm + 2 MP 25�C TSB 72 hours Static �4 to �3 [47]

Yeasts (Candida, Rhodotorula) DS 1 Lm + 4 SS 25�C Apple juice 24 hours Static 0 to +1 [48]

Nonidentified bacteria from salmon MS 1 Lm +

unknown

SS 4,

15�C
1/20 TSB or

salmon broth

14 days Static �1 to +1 [49]

a DS: dual-species biofilm; MS: multispecies biofilm.
b Total number of strains of L. monocytogenes (Lm) + total number of strains for all other tested species (combined).
c SS: Stainless steel coupons; PP: polypropylene; MP: Microtiter plate.
d Change in numbers of Lm in multispecies biofilms relative to monospecies biofilms, given as change in colony forming units (cfu) for Lm: log(cfu in

multispecies biofilm) � log(cfu in monospecies biofilm). For the majority of the studies the effect varied depending on inoculation levels, strains,

temperature, time and/or medium.
exception is the study by Puga et al. [45�] where there was

1–2 log more L. monocytogenes present in preformed Pseu-
domonas biofilms than in L. monocytogenes monospecies

biofilms. The biofilms were grown on glass coverslips in a

reactor with applied shear forces, and L. monocytogenes was

found to migrate to the bottom layer of the dual species

biofilm. Potentially, L. monocytogenes alone was unable to

form thick biofilms in the presence of shear forces, while

in co-culture, the strong biofilm-former Pseudomonas pro-

vided a protected biofilm in which L. monocytogenes could

thrive.

When designing a model system aiming to investigate

mechanisms of relevance for biofilm formation and L.
Current Opinion in Food Science 2021, 37:171–178 
monocytogenes prevalence in food industry, choosing the

right environmental factors is equally important as choos-

ing the right microbial consortium [50]. Typical niches

where L. monocytogenes survives in food production envir-

onments are scratches or grooves in or between different

types of (worn) materials or complex equipment, such as

drains, floors, conveyors or slicers – locations which are

often difficult to reach with sanitation and where nutri-

ents and solids tend to build up – as well as locations at

room temperature or colder [53]. For example, biofilm

formation on open smooth stainless steel surfaces is not

likely to be a significant issue in food processing facilities.

Nevertheless, most reviewed studies employ stainless

steel coupons as the solid surface material (Table 2).
www.sciencedirect.com
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Furthermore, some studies employ cultivation tempera-

tures of 30�C or 37�C [38,40,41,52], conditions which are

not relevant for food industrial environments where L.
monocytogenes is a challenge.

In the current context, in situ investigation of interactions

in multispecies biofilms in the food industry is an inter-

esting approach, and as previously mentioned, there are

some older studies showing that certain bacteria affects

the prevalence of L. monocytogenes in drains [9,54] and

cheese vats [32]. However, we are not aware of similar

studies from the review period.

Strain variation in biofilm phenotypes
Certain genotypes of L. monocytogenes are more commonly

found to colonize food processing equipment than others.

A large number of studies have examined whether spe-

cific strains or variants of L. monocytogenes have special

fitness traits that can explain persistence; however, no

clear links between persistence and inherent phenotypes

have been identified [3,53,55]. Lianou et al. [6��] recently

reviewed studies examining correlations between

increased ability to produce monospecies biofilm with

persistence in food industry environments. The amount

of biofilm formed by distinct L. monocytogenes strains has

been found to be highly dependent on extrinsic factors

such as temperature and nutrients, with inconsistent

variations across different growth conditions and experi-

mental designs [6��,7]. However, under a given set of

environmental conditions, differences in biofilm forma-

tion efficiency between L. monocytogenes strains or genetic

lineages can be seen. For example, persistent genotypes

were associated with higher survival and biofilm forma-

tion capacity in the presence of sublethal concentrations

of the disinfectant benzalkonium chloride [56].

Studies examining interactions between L. monocytogenes
and other bacteria in mixed-species biofilms rarely take

into account strain-to-strain variation within L. monocyto-
genes (Table 2), and vice versa. However, in one study

where both factors were examined [42�], clear differences

in the distribution of individual L. monocytogenes isolates

was observed between monospecies and multispecies

biofilms: Of six L. monocytogenes strains, one strain out-

competed the others, but only in the presence of both

Listeria innocua strains and a mixed Gram-negative micro-

biota dominated by Pseudomonas. The composition of the

biofilm reflected the composition of the suspension sur-

rounding the biofilm coupons, thus the effect was not

necessarily biofilm-specific [42�]. However, it may be

speculated that such strain-specific variations in growth

and survival within multispecies biofilms may explain

why certain types of L. monocytogenes persists in the food

industry, and highlights the significance of including

more than one strain of each species in studies of inter-

actions within microbial biofilms.
www.sciencedirect.com 
Genomics and network analysis
Further studies are needed to examine whether the pres-

ence of certain members of the resident microbiota shows a

significant correlation (either positive or negative) with the

occurrence of L. monocytogenes in food processing facilities.

Recent advances in high throughput sequencing (HTS)

have resulted in generation of large volumes of data on the

relative composition of microbial communities, mainly

through 16S rRNA gene amplicon sequencing studies

[57]. The methods are sensitive enough to allow detection

of nondominant members of a community which may play

important roles within a given ecosystem. The technologi-

cal advances and large data volumes offered by HTS

methods have resulted in rapid development of more

efficient data analysis methods, such as novel methods

within the field of network analysis [58–60]. Microbial

interaction networks have for example been used to predict

that in the gut, Barnesiella inhibits Clostridium difficile infec-

tion, an interaction which was subsequently confirmed by

in vitro co-culture experiments [61].

Another option enabled by HTS technology is the use of

metatranscriptomic sequencing to study changes in gene

expression profiles underlying bacterial interactions in

multispecies biofilms. This approach has unraveled func-

tionality and interactions in consortia such as biofilm

communities from soil and oral biofilms, revealing for

example strain-dependent effects of one species on gene

expression patterns in others, as well as given insight into

specific interactions between different consortium mem-

bers [62,63].

Within the field of food microbiology, the majority of

microbiome studies employing HTS technology have

aimed to monitor fermentative processes or food spoilage,

with relatively fewerstudiesundertaken toexamine factory

environments, despite the role of the processing environ-

ments as a source of both spoilage microbiota and patho-

genic bacteria [57,64�]. Microbial association network anal-

ysis has been applied to the study of food microbiomes

[65,66,67�] and for analysis of co-occurrence patterns

between bacterial families found in the environmental

microbiome of a fruit processing facility [26�]. However,

this approach is still underexploited for detection of eco-

logical correlation patterns or interactions between mem-

bers of environmental biofilm communities found on sur-

faces in food industry. It would be interesting to see to what

extent these approaches can shed light on factors responsi-

ble for L. monocytogenes persistence, or be used to identify

niches where L. monocytogenes would be able to persist, if

introduced to the processing environment. The elimina-

tion of potential niches would be a more proactive strategy

than monitoring for the pathogen itself.

Conclusions
The problem of persistence of L. monocytogenes in food

processing factories, as well as its association with the
Current Opinion in Food Science 2021, 37:171–178
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formation of biofilms, has been acknowledged for many

years. The microbial ecology underlying the survival of

this pathogen in these man-made environments is, how-

ever, still not well understood. In recent years, researchers

have started to study the microbial ecosystems associated

with the presence of L. monocytogenes in these habitats.

There is also considerable interest in examination of

interactions between L. monocytogenes and other bacteria,

in part due to the hope that biocontrol interventions may

help improve the control of this pathogen in food proces-

sing environments.

The main impression from recent studies is that persis-

tent L. monocytogenes share environmental niches with

several other members of the resident microbiota in food

factories, and that the interactions are mostly competitive

in nature. For L. monocytogenes, attempts to find single

traits that can explain persistence of certain genotypes

have failed. Most probably, persistence requires a match

between each specific L. monocytogenes strain and the

microbiota and the microenvironment where it is intro-

duced. There are few in situ studies on the microbiota and

microenvironment where persistent L. monocytogenes
reside, and information from such studies could guide

further experimental research. With that, the focus of

future studies could shift from reductionistic approaches

to more complex and realistic laboratory models, enabling

further investigation into causal relationships underlying

interspecies or interstrain interactions and the effect of

environmental factors on the composition of microbial

communities in factory environments. Likewise, applica-

tion of novel methodology based on recent advances in

sequencing technologies and network analysis is

expected to increase our understanding of pathogen

persistence. The overall impact of these insights could

be a shift in management of L. monocytogenes, where the

current ‘seek and destroy’ strategy is replaced with a

preventive approach in which environmental niches pro-

moting pathogen growth can be removed.
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4. Lüth S, Halbedel S, Rosner B, Wilking H, Holzer A, Roedel A,
Dieckmann R, Vincze S, Prager R, Flieger A et al.: Backtracking
and forward checking of human listeriosis clusters identified a
multiclonal outbreak linked to Listeria monocytogenes in meat
products of a single producer. Emerg Microbes Infect 2020,
9:1600-1608.

5. Stephan R, Althaus D, Kiefer S, Lehner A, Hatz C, Schmutz C,
Jost M, Gerber N, Baumgartner A, Hächler H et al.: Foodborne
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36. Iñiguez-Moreno M, Gutiérrez-Lomelı́ M, Avila-Novoa MG: Kinetics
of biofilm formation by pathogenic and spoilage
microorganisms under conditions that mimic the poultry,
meat, and egg processing industries. Int J Food Microbiol 2019,
303:32-41.

37. Alonso VPP, Kabuki DY: Formation and dispersal of biofilms in
dairy substrates. Int J Dairy Technol 2019, 72:472-478.
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