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László Abrankó d, Ana Rodriguez-Mateos e, Andreia Bento da Silva f,g, Christof van Poucke h, 
Conceição Almeida f, Cristina Andres-Lacueva i,j, Dilip K. Rai k, Esra Capanoglu l, 
Francisco A. Tomás Barberán m,n, Fulvio Mattivi o,p, Gesine Schmidt q, Gözde Gürdeniz r, 
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Marynka Ulaszewska o,2, Pedro Mena v, Raúl González-Domínguez i,j, Rocío Garcia-Villalba m, 
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A B S T R A C T   

Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS 
matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to 
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predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29–103 
compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 
667 predictions were obtained with a median prediction error of 0.03–0.76 min and interval width of 0.33–8.78 
min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on 
shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet’s 
accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data 
sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful 
community-driven open-access tool for metabolomics annotation.   

1. Introduction 

The dark matter in metabolomics refers to the large fraction of mo-
lecular signals that are detected with untargeted analyses but remain 
unidentified. Part of this dark matter corresponds to the food metab-
olome. Currently, >26,000 compounds have been described in foods 
(https://foodb.ca), and upon ingestion and digestion, these food com-
ponents are further transformed into various metabolites (Scalbert et al., 
2014), many of which are not identified or inventoried yet in databases 
(Barabási, Menichetti, & Loscalzo, 2020). Plant food bioactive com-
pounds (also referred as dietary phytochemicals, e.g., (poly)phenols, 
carotenoids, glucosinolates, alkaloids) and their phase I, -II and gut 
microbial metabolites represent an important class of the food metab-
olome that receive widespread interest for their protective health effects 
and more recently, for their usefulness as food intake biomarkers. They 
cover a large chemical space ranging from highly polar to lipophilic 
compounds, and their identification in untargeted methods remains a 
challenging feat. 

Identification of unknowns in untargeted metabolomics combines 
multiple types of information and tools, such as matching of exact mass 
in compound databases, comparison of experimental to reference MSn 

spectral data and chromatographic retention time (RT) of authentic 
standards for Metabolomics Standards Initiative (MSI) level I identifi-
cation, or to publicly available spectral databases for MSI level II 
(Sumner et al., 2007). But searches in databases often return an exces-
sive number of structurally similar hypotheses (Hall et al., 2018), and 
purchasing all corresponding standards is not feasible due to limited 
availability and high cost. In the case of plant food bioactive compounds 
and their metabolites, identification is further challenged by the lack of 
commercial standards and the high structural similarity between many 
isomeric compounds, which makes their MS/MS spectra 
indistinguishable. 

Leveraging orthogonal data such as RT becomes valuable for assist-
ing the certainty of identification to MSI levels l and ll, by narrowing the 
number of plausible hypotheses within an observed RT window. Recent 
years have seen several approaches to adopt RT prediction models for 
integration into untargeted analysis workflows with varying degrees of 
success (McEachran et al., 2018; Witting & Böcker, 2020). Existing types 
of RT prediction models include i) simple algorithms based on log P or 
gradient back-calculation (Boswell, Schellenberg, Carr, Cohen, & 
Hegeman, 2011; Abate-Pella et al., 2015), ii) monotonically constrained 
generalised additive model (GAM) (Stanstrup, Neumann, & Vrhovšek, 
2015) of retention times and iii) complex in silico quantitative structure- 
retention relationship (QSSR) models based on combinations of molec-
ular descriptors. QSSRs can be built using different machine learning 
approaches, such as artificial neural network, random forest and support 
vector regression models (Aalizadeh, Nika, & Thomaidis, 2019; 
Domingo-Almenara et al., 2019; Hall et al., 2018; McEachran et al., 
2018; Bouwmeester, Martens, & Degroeve, 2020; Naylor, Catrow, 
Maschek, & Cox, 2019; Bade et al., 2015; Tada et al., 2019; Wolfer et al., 
2015). However, these prediction models are limited in their applica-
tion, as RT data are specific to one chromatographic system (CS) and the 
models do not provide accurate predictions outside the trained 
conditions. 

As analytical methods are not harmonised and most laboratories tend 

to have their own routine semi-targeted or untargeted LC methods for 
covering plant food bioactive compounds in various types of matrices 
(serum, plasma, urine, digestive fluids, food materials), it is ideal that RT 
prediction models be customisable across CSs. PredRet (Stanstrup et al., 
2015) represents an original approach that enables users of the scientific 
community to benefit from RT data sharing through its open access RT 
database, and obtain predictions in their own CS if the RT of a compound 
has been experimentally determined by another user or laboratory. In 
this aspect, PredRet is relevantly applicable for transposing RTs between 
CSs differing in mobile phase composition, gradient, flow rate and col-
umn dimensions. In the framework of the COST Action POSITIVe 
(https://www6.inra.fr/cost-positive, FA1403), we evaluated the per-
formance of PredRet to predict the RTs of plant food bioactive com-
pounds and their metabolites in a multi-laboratory test involving 19 
laboratories across Europe, using 24 gradient-based reversed-phase CSs. 
We also expanded PredRet database with experimental RTs of 467 plant 
food compounds. 

2. Experimental section 

2.1. Chemical compounds 

All participating laboratories purchased their own chemicals, 
differing from one laboratory to another, except that 10 laboratories 
previously involved in a multiplatform coverage test organised by the 
COST Action POSITIVe, received two common standard mixtures 
comprising of 56 plant food bioactive compounds (Koistinen et al., 
2018). Synthesised standards (n = 49) were accepted in addition to 
commercial standards, provided that the structure was unambiguously 
elucidated by NMR and MS/MS spectra and that the compounds are 
entered in the online platform for food compound exchange, FoodCo-
mEx (https://foodcomex.org/). Depending on laboratories, chemicals 
were analysed in solvent or spiked in biological matrices (urine or 
plasma). A full list of the 467 analysed compounds is provided in 
Table S1, with their common name, InChI, IDs in HMDB, FooDB and 
PhytoHub, taxonomy, chemical structure, formula, monoisotopic mass, 
predicted logP and the number of CSs where they were analysed. 

Experimental RT datasets containing compound name, InChI and/or 
chemical structure were provided by the involved laboratories. InChIs 
were used as unambiguous identifiers for recognition of identical com-
pounds between CSs and compound names were harmonised across 
laboratories. For polyphenol metabolites, we applied the new reference 
KCC nomenclature (Kay et al., 2020). InChIs were either extracted from 
databases such as PhytoHub (http://phytohub.eu), PubChem (htt 
ps://pubchem.ncbi.nlm.nih.gov) (Kim et al., 2019), HMDB v4.0 
(www.hmdb.ca) (Wishart et al., 2018) or computed from chemical 
structures using Marvin v19.7, 2019, ChemAxon (https://www.che 
maxon.com). LogP values were computed using ALOGPS v2.1 (http 
://www.vcclab.org/lab/alogps/) (Tetko et al., 2005; VCCLAB, 2005) 
after conversion of InChIs to SMILES via InChIToSMILES (http://www. 
chemspider.com/inchi.asmx) (Pence & Williams, 2010). In PredRet 
database, the main InChI layer containing chemical formula, atom 
connections and hydrogen atom sublayers is considered when matching 
compounds, and information after the main layer (e.g., charge, stereo-
chemical and isotopic layers) is ignored. 

D.Y. Low et al.                                                                                                                                                                                                                                  

https://foodb.ca
https://www6.inra.fr/cost-positive
https://foodcomex.org/
http://phytohub.eu
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://www.chemaxon.com
https://www.chemaxon.com
http://www.vcclab.org/lab/alogps/
http://www.vcclab.org/lab/alogps/
http://www.chemspider.com/inchi.asmx
http://www.chemspider.com/inchi.asmx


Food Chemistry 357 (2021) 129757

3

2.2. Chromatographic systems 

Experimental RT data were collected from 24 CSs across 19 labora-
tories. These CSs were not intentionally optimised for the RT prediction 
test but rather represent the routine semi-targeted or untargeted 
metabolomic methods of the various laboratories. A full description of 
instrument, column and analytical conditions used in the 24 CSs is 
provided in Table 1. Overall, 15 C18 reverse-phase (RP) columns from 
various manufacturers were used with dimensions ranging from 0.5 to 
4.6 mm (internal diameter), 50 to 250 mm (length) and 1.6 to 5 μm 
(particle size). HPLC or UHPLC methods were used in acidic conditions. 
Water and acetonitrile acidified with formic acid (0.1–0.9%) or tri-
fluoroacetic acid (0.1%) were most commonly used as mobile phases A 
and B, while three CSs used methanol or acetone as mobile phase B. The 
gradients utilised in 13 UHPLC methods consisted of linear and multi-
phasic slopes with flow rates of 0.4 to 0.6 mL/min and total run times 
ranging from 6 to 26 min. There were four HPLC methods with multi-
phasic slopes with flow rates of 0.015 to 1.5 mL/min and longer run 
times of 20 to 135 min. Fig. S1 shows the diversity of gradient slopes in 
the 24 CS. 

2.3. Prediction of retention times 

Experimentally measured RTs (Table S3) were entered in PredRet for 
the 467 compounds listed in Table S1. The number of measured RTs by 
CS varied from 29 in CS9 to 103 in CS14. For each CS, the compound 
names, InChI and experimentally measured RTs were entered into Pre-
dRet web interface (http://predret.org) along with a description of the 
respective CS method. PredRet is then able to predict RTs for compounds 
that have not been previously experimentally measured in one CS but 
have been determined in some other CS. The prediction is achieved by 
constructing GAMs between all pairs of CSs in the PredRet database 
using the compounds that were measured in both CSs. Empirical pre-
diction intervals (PI) were established via bootstrapping of GAMs, as 
described in more details by Stanstrup et al (2015). The model providing 
the prediction with narrowest PI was then used. Predictions were flag-
ged as suspicious by the program if the RT is considered potentially 
incorrect, when the difference between experimental and predicted RTs 
was ≥twice the distance from the predicted RT to outer limits of the PI. 
Predictions were automatically discarded if their PI widths were ≥2 min 
or ≥20% of the predicted RT. The total number of RT predictions be-
tween CSs, as well as accuracy and coverage of PI relative to the total 
chromatographic run time, were compared. 

2.4. Validation of predicted retention times 

A validation test was conducted on CSs 1, 2, 4, 5, 14, 18, 19, and 22, 
which had the highest number of experimental RT values. These eight 
CSs comprise of UHPLC and UPLC methods varying in LC instrument and 
gradient, column, mobile phases, flow rate and run time. The experi-
mental RT datasets of these CSs were split into training sets (80% data, n 
= 79, 71, 73, 67, 82, 63, 63, and 78 compounds respectively) and test 
sets (20% data, n = 20, 18, 18, 17, 21, 16, 16, and 19 compounds 
respectively). For selection of compounds in the test sets, the datasets 
were split into three equal sections covering the beginning, middle and 
end of the chromatographic run, and then 20% of the compounds were 
randomly selected from the three sections to ensure a uniform distri-
bution of RT along the entire chromatographic run. Another criterion 
was to select, in the test set, the same proportion of unique compounds 
as in the whole dataset of the selected CSs. Validation of RT predictions 
for each of the eight selected CSs was performed in conditions where the 
complete datasets of the remaining 23 CSs were entered into the PredRet 
database. 

3. Results and discussion 

3.1. Large diversity of plant food metabolites analysed 

A total of 1583 experimental RT values were collected for 467 plant 
food compounds or related human metabolites in one or several of the 
24 CSs used by the 19 participating platforms. The 467 compounds 
belong to > 30 families including flavonoids (anthocyanins, flavonols, 
flavones, flavanols, flavanones, isoflavones), phenolic acids, lignans, 
ellagitannins, coumarins and furanocoumarins, nitrogen-containing 
compounds (i.e., alkaloids, amines, indoles), glucosinolates, alkylre-
sorcinols, thiosulfinates, tocopherols, phytosterols, carotenoids and 
mono, di-, sesqui- and triterpenoids, and their human metabolites, e.g., 
glucuronidated and sulfated conjugates, as well as gut microbial me-
tabolites. They cover a large chemical space from highly polar to lipo-
philic with predicted logP values from –3.48 to 10.40 and with 
monoisotopic masses from 95.0371 to 934.0712 Da (Fig. 1). The PredRet 
database is growing continuously with addition of new compounds and 
associated RT data by registered users. At the time of our experiment, a 
limited number of plant food compounds was present in PredRet, and 
our datasets represented a major update for this category of compounds. 

The number of CSs in which each compound was analysed is pro-
vided in Table S1. Of the 467 entered compounds, 212 were analysed in 
one CS only, while 4′-hydroxy-3′-methoxycinnamic (ferulic), 4-hydroxy- 
3-methoxybenzoic (vanillic), 3,4-dihydroxybenzoic (protocatechuic), 5- 
O-caffeoylquinic and 4′-hydroxycinnamic (p-coumaric) acids were most 
commonly measured in 20 of the 24 CSs (Fig. S2). The size of the 
datasets varied from 29 to 103 experimental RTs. CSs 1, 2, 4, 5, 7, 14, 17, 
18, 19, 22, and 23 contained ≥ 75 RTs, as illustrated by their large node 
size in Fig. 2, in contrast to CS9 and CS16, which contained the least RT 
data (29 and 35 RTs, respectively). Across the platforms, CSs 2, 6, 11, 13, 
and 15 shared the highest compound overlap as evidenced by their 
highly connected nodes (Fig. 2) while still showing relatively good 
overlap with CSs 1, 3, 7, 14, 16, 22, and 23. Pairwise clusters of CSs 
18–19 and 4–5 were observed as they shared >90% compounds simi-
larity, corresponding to two analytical methods from the same platform. 

3.2. Retention time prediction coverage and rate 

A total of 6382 new RT predictions were obtained for the 24 CSs, 
with up to 667 predictions for one CS (Table 2 and Fig. S3). Compounds 
that were entered in PredRet prior to this study (1783 unique com-
pounds, ~10% were plant food bioactive compounds) contributed to 
prediction of additional compounds beyond the 467 compounds entered 
in this study. We observed a general trend that as more experimental RTs 
are entered in PredRet, more RT predictions are generated for com-
pounds not previously analysed. This is demonstrated in CSs 1, 2, 22, 
and 23 where 559, 539, 667, and 572 new RT predictions were gener-
ated from 98, 89, 97 and 75 compounds entered into PredRet respec-
tively (Table 2). However, RT prediction was also dependent on shape 
(Fig. S1) and type (i.e., UHPLC or HPLC) of the LC gradient as well as 
number of common compounds shared with other CSs. For example, 
infrequently used mobile phases may limit the predictability of a CS. The 
entry of 29 compounds for CS9 was not sufficient to obtain RT pre-
dictions. However, despite relatively small RT datasets (35 to 46 com-
pounds) were entered for CSs 11, 15 and 16, they had a high prediction 
rate, explained by a versatile CS and/or good combination of 
compounds. 

3.3. Retention time prediction accuracy 

PredRet provided RT predictions for compounds never analysed in 
the CSs but also for compounds in the entry dataset. We used the latter to 
compare prediction accuracy between CSs. RT predictions were highly 
accurate across the 24 CSs, with median prediction errors between 0.03 
and 0.76 min (Table 2). As run times vary greatly across CSs (5 to 135 
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Table 1 
Instrument and conditions of chromatographic systems used by participating platforms.  

Method LC instrument Column specifications Column 
temperature 
(◦C) 

Mobile phases sample 
matrix 

Flow rate 
(mL/min) 

Run 
time 
(min) 

LC gradient (t[min], %B) 

U-CS1 UHPLC: Thermo 
U3000 
QTOF MS: Bruker 
Impact HD2 

Waters Acquity HSS T3 
(2.1x150 mm, 1.8 µm, 100 Å) 

30 A: H2O + 0.1% FA 
B: ACN + 0.1% FA 

solvent, 
plasma 

0.4 26 (0, 0), (2, 0), (15, 100), (22, 
100), (22.1, 0), (26, 0) 

U-CS2 UHPLC: Agilent 
1290 
QTOF MS: Agilent 
6540 

Agilent Zorbax Eclipse XDB 
C18 (2.1x100 mm, 1.8 µm, 80 
Å) 

50 A: H2O + 0.1% FA 
B: MeOH + 0.1% 
FA 

plasma, 0.4 16.5 (0, 2), (10, 100), (14.5, 
100), (14.51, 2), (16.5, 2) 

U-CS3 UHPLC: Thermo 
U3000 
QTOF MS: Bruker 
Impact HD2 

Waters Acquity UPLC BEH 
Shield RP18 (2.1x100 mm, 
1.7 µm, 130 Å) 

30 A: H2O + 0.1% FA 
B: ACN + 0.1% FA 

solvent, 
urine 

0.6 26 (0, 0), (2, 0), (7, 10), (22, 
95), (22.1, 0), (26, 0) 

U-CS4 UHPLC: Agilent 
1290 Infinity 
QTOF MS: Agilent 
6550 iFunnel 

Agilent Zorbax Eclipse Plus 
RRHD (2.1x50 mm, 1.8 
µm, 95 Å) 

30 A: H2O + 0.1% FA 
B: ACN + 0.1% FA 

plasma, 
urine 

0.4 12 (0, 1), (5, 10), (8, 25), (9.1, 
99), (10, 99), (12, 1) 

U-CS5 UHPLC: Thermo 
Accela 1250 
QTRAP MS: 
Thermo Exactive 

Agilent Zorbax Eclipse Plus 
RRHD (2.1x50 mm, 1.8 
µm, 95 Å) 

30 A: H2O + 0.1% FA 
B: ACN + 0.1% FA 

plasma, 
urine 

0.4 12 (0, 1), (5, 10), (8, 25), (9.1, 
99), (10, 99), (12, 1) 

H-CS6 HPLC: Agilent 
1260 
QTOF MS: Agilent 
6530 

Phenomenex Synergi Hydro- 
RP (2x150 mm, 4 µm, 80 Å) 

30 A: H2O + 0.1% FA 
B: ACN + 0.1% FA 

solvent, 
urine 

0.5 45 (0, 5), (1, 5), (35, 45), (40, 
100), (45, 100) 

U-CS7 UHPLC: H-class 
QTOF MS: Synapt 
G2 S 

Waters Acquity UPLC BEH 
Shield RP18 (2.1x150 mm, 
1.7 µm, 130 Å) 

40 A: H2O + 0.1% FA 
B: ACN + 0.1% FA 

solvent, 
urine 

0.4 37.1 (0, 5), (30, 50), (31, 100), 
(37, 100), (37.1, 0) 

H-CS8 HPLC: Waters 
HPLC 2695 
PDA: Waters 2996 

Interchim Supelcosil LC-18 
(4.6x250 mm, 5 µm, 120 Å) 

40 A: H2O + 0.1% 
TFA 
B: ACN + 0.1% 
TFA 

solvent 1 50 (0,5), (45, 35), (47, 75), (49, 
35), (50, 5) 

H-CS9 HPLC: Agilent 
1200 
QTRAP MS: AB 
Sciex 4000 

Phenomenex Kinetex PFP 
(4.6x100 mm, 2.6 µm, 100 Å) 

35 A: H2O + 0.1% 
TFA 
B: ACN + 0.1% 
TFA 

solvent 1.5 32 (0, 1), (7, 7.5), (14, 7.6), 
(17, 10), (18.5, 12), (20, 
12.5), (24, 30), (25, 90), 
(25.1, 1), (32, 1) 

H-CS10 HPLC: Waters 
Alliance 2695 
QTOF MS: Waters 
Premier 

Waters Atlantis T3 (2.1x100 
mm, 3 µm, 100 Å) 

40 A: H2O + 0.1% 
TFA 
B: ACN + 0.1% 
TFA 

solvent 0.3 25 (0, 10), (1, 10), (6, 40), (7, 
50), (8, 50), (14, 70), (16, 
80), (18, 80), (20, 10), (25, 
10) 

U-CS11 UHPLC: Agilent 
1290 
QTRAP MS: Sciex 
6500 

Phenomenex Luna Omega 
Polar C18 (2.1x100 mm, 1.6 
µm, 100 Å) 

40 A: H2O + 0.5% FA 
B: ACN + 0.5% FA 

solvent, 
urine 

0.5 7 (0, 5), (3, 50), (3.1, 100), (5, 
100), (5.1, 5), (7, 5) 

U-CS12 UHPLC: Agilent 
1290 
QTRAP MS: Sciex 
6500 

Phenomenex Luna Omega 
Polar C18 (2.1x100 mm, 1.6 
µm, 100 Å) 

40 A: H2O + 0.1% FA 
+

10 mM 
NH4COOH,  
B: ACN 

solvent, 
urine 

0.5 14 (0, 5), (8, 20), (10, 100), 
(12, 100), (12.1, 5), (14, 5) 

H-CS13 HPLC: Agilent 
1200 
QTOF MS: Agilent 
G6530A 

Phenomenex Luna C18 
(4.6x150 mm, 3 µm, 100 Å) 

25 A: H2O + 0.1% FA 
B: ACN + 0.1% FA 

solvent, 
urine 

0.5 65 (0, 0), (30, 30), (35, 40), 
(50, 80), (52, 80), (60, 0), 
(65, 0) 

H-CS14 HPLC: Agilent 
1290 
QTOF MS: Agilent 
6550 

Agilent Poroshell 120 EC C18 
(3x100 mm, 2.7 µm, 120 Å) 

25 A: H2O + 0.1% FA 
B: ACN + 0.1% FA 

solvent, 
urine 

0.4 30 (0, 5), (10, 25), (20, 40), 
(24, 90), (25, 90), (26, 5), 
(30, 5) 

H-CS15 HPLC: Eskigent 
nanoLC 
QTOF MS: Sciex 
TripleTOF 6600 

Eksigent HALO C18 (0.5x50 
mm, 2.7 µm, 90 Å) 

35 A: H2O + 0.1% FA 
B: ACN + 0.1% FA 

solvent, 
urine 

0.01 16 (0, 5), (12, 95), (14, 95), 
(16, 5) 

H-CS16 HPLC: AB Sciex 
MicroLC 200 
QTOF MS: AB 
Sciex 6500+

Eksigent HALO C18 (0.5x100 
mm, 2.7 µm, 100 Å) 

45 A: H2O + 0.9% FA 
B: ACN + 0.9% FA 

solvent, 
urine 

0.015 5 (0, 1), (0.5, 1), (4, 95), (4.5, 
1), (5, 1) 

H-CS17 HPLC: Agilent 
1290 
QTOF MS: Agilent 
6520 

Phenomenex Synergi Hydro 
(2x250 mm, 4 µm, 80 Å) 

25 A: H2O + 0.1% FA 
B: ACN + 0.1% FA 

solvent 0.2 50.1 (0, 0.5), (7, 0.5), (12, 12.5), 
(25, 16.3), (47, 35), (48, 
65), (50, 65), (50.1, 0.5) 

U-CS18 HPLC: Dionex 
Ultimate 3000 
FT Orbitrap LTQ- 
XL MS: Thermo 

Phenomenex Kinetex Core 
shell (2.1x150 mm, 2.6 µm, 
100 Å) 

40 A: H2O + 0.1% FA 
B: ACN + 0.1% FA 

plasma 0.35 15 (0, 0), (1, 0), (12.5, 100), 
(14, 100), (14.2, 0), (15, 0) 

(continued on next page) 
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min), median prediction errors were also expressed in percentage rela-
tive to the total runtime, ranging from 0.3% to 1.8% (CS9 excluded). 

A graph comparing experimental and predicted RTs for compounds 
of CS1 entry dataset is given in Fig. 3 as an example. Equivalent graphs 
for all other CSs are provided in Fig. S4. In CS1, accurate predictions 
with narrow PI were obtained for most compounds with RT ranging 
between 6.6 and 14.2 min. Predictions for eight compounds (myo- 
inositol, proline betaine, dopamine, 3,4,5-trihydroxybenzoic acid (gallic 
acid), 1,3-dimethyluric acid, α-tocopherol, ursolic acid and alkylre-
sorcinol C17:0) were discarded by PredRet algorithm as their PI widths 
were ≥2 min or >20% of the predicted RT. PI width is an important 
indicator of prediction accuracy as it represents how accurate the pro-
jection models are, based on the number of experimentally known RTs in 
the RT range of compounds that are being projected in the pairwise CS 

models (Stanstrup et al., 2015). We observed that predictions were 
usually missing at the beginning and end of the runs, where there tends 
to be a low density of known RTs, and conditions are approaching the 
analytical limits of the CSs (Fig. S5). In CS1, predictions were not 
generated before the first 1.5 min and after 14 min. For 15 compounds 
(1-methylpiperidine, arbutin, 1-methylxanthine, 1H-pyrrole-2-carbox-
aldehyde, cyclo(Leu-Pro), 5-(3′,4′-dihydroxyphenyl)valeric acid, 
homoeriodictyol, tomatidine, formononetin, bergapten, nobiletin, iso-
sakuranetin, kaempferide, biochanin A, and bergamottin), RT prediction 
was not expected, as they were not present in any other CS. Globally, 
PredRet performed well for CS1 with a median prediction error of 0.07 
min (0.27% of runtime) and median PI width of 0.83 min. For 77 non- 
unique compounds entered into PredRet, 559 new predictions for 
compounds never analysed in this system were obtained, in the range of 

Table 1 (continued ) 

Method LC instrument Column specifications Column 
temperature 
(◦C) 

Mobile phases sample 
matrix 

Flow rate 
(mL/min) 

Run 
time 
(min) 

LC gradient (t[min], %B) 

U-CS19 HPLC: Dionex 
Ultimate 3000 
FT Orbitrap LTQ- 
XL MS: Thermo 

Phenomenex Kinetex Core 
shell (2.1x150 mm, 2.6 µm, 
100 Å) 

40 A: H2O + 0.1% FA 
B: ACN + 0.1% FA 

urine 0.35 12 (0, 0), (1, 5), (7, 45), (8.5, 
80), (10.5, 80), (11, 5), (12, 
5) 

H-CS20 HPLC: Shimadzu 
Prominence 
System 
PDA: SPD-M20A 

Phenomenex Kinetex PFP 
(4.6x100 mm, 5 µm, 100 Å) 

45 A: H2O + 0.1% 
TFA 
B: MeOH 

solvent 0.6 20 (0, 40), (20, 72), (21,40) 

H-CS21 HPLC: Waters 
Alliance 2695 
QqQ-MS: 
Micromass® 
Quattro Micro 

LiChrospher®100 
LiChroCART® (4x250 mm, 5 
µm, 100 Å) 

35 A: H2O + 0.5% FA 
B: ACN + 0.5% FA 

solvent 0.3 135 (0, 5), (10, 5), (30, 15), (45, 
20), (65, 20), (95, 54), (110, 
63), (115, 5), (135, 5) 

U-CS22 UHPLC: Waters 
Acquity 
QTOF MS: Waters 
Premier 

Waters Acquity BEH C18 
(2.1x100 mm, 1.7 µm, 130 Å) 

65 A: H2O + 0.1% FA 
B: 80% ACN +
20% Ac + 0.1% 
FA 

solvent, 
plasma 

0.4 6 (0, 0), (5, 100), (5.5, 0), (6, 
0) 

U-CS23 UHPLC: Waters 
Acquity 
QTOF MS: Waters 
Premier 

Waters Acquity HSS T3 C18 
(2.1x100 mm, 2.6 µm, 100 Å) 

50 A: H2O + 0.1% FA 
B: 70% ACN +
30% MeOH +
0.1% FA 

solvent, 
plasma, 
urine 

0.5–1.2 7 (0, 5), (1, 8), (2, 15), (3, 40), 
(4, 70), (4.5, 100), (5, 100), 
(6.4, 100), (6.6, 5), (6.8, 5), 
(7, 5) 

U-CS24 UHPLC: Dionex 
Ultimate 3000 
QqQ-MS: Thermo 
Fisher TSQ 
Vantage 

Phenomenex Kinetex EVO 
C18 (2.1x100 mm, 2.6 
µm, 100 Å) 

40 A: H2O + 0.2% FA 
B: ACN + 0.2% FA 

plasma, 
urine 

0.4 12 (0, 5), (0.5, 5), (7, 95), (8, 
95), (8.5, 5), (12, 5)  

Fig. 1. Chemical space covered by the 467 plant food metabolites entered in PredRet.  
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1.01 to 14.18 min. 
Amongst CS7, CS8, CS9, CS14, CS17, CS20, and CS24, a common 

trait is the high proportion of rare plant compounds unique to their CSs, 
which indirectly resulted in a low number of common compounds 
shared with other CSs. For example, CS7 contained sesquiterpenoids not 
represented in other CSs, likewise for anthocyanin glycosides in CS8, 
urolithins and conjugated isoflavone metabolites in CS14, glucosinolates 
and rare flavonoids in CS17, flavonolignans (e.g., dehydrosilydianin), 
rare flavonoids and sulfated conjugates in CS20, and urolithins and 
conjugated flavonoids in CS24. Adding the RTs of these rare plant food 
compounds and metabolites contributes to the richness of PredRet 
database; however, a caveat is that these CSs themselves may not receive 
the benefit of good prediction coverage. In such circumstances, the user 
is encouraged to include common plant compounds that are also 
frequently represented in the PredRet database. As an example, we 
propose a list of 14 compounds frequently analysed in our study (≥67% 
of 24 CSs), which covers a wide RT range: 4′-hydroxy-3′-methoxycin-
namic acid (ferulic acid), 4-hydroxy-3-methoxybenzoic acid (vanillic 
acid), 5-O-caffeoylquinic acid, 4′-hydroxycinnamic acid (p-coumaric 
acid), 3,4-dihydroxybenzoic acid (protocatechuic acid), 3′,4′-dihydrox-
ycinnamic acid (caffeic acid), 3,4,5-trihydroxybenzoic acid (gallic acid), 
3′,5′-dimethoxy-4′-hydroxycinnamic acid (sinapic acid), (–)-epi-
catechin, kaempferol, hippuric acid, luteolin, phloretin, and hesperetin 
(Table S4). 

To further validate the predictive performance of GAM in PredRet, 
we performed an external validation test on a subset of eight CSs, 
splitting the experimental datasets into 80% for training sets and 20% 
for test sets. The training sets were used to build GAMs between CSs in 
PredRet database to obtain predictions with PIs for the compounds in 
the test sets. Predictions were compared to experimental data to obtain 
the prediction error for each compound (Table S5) and the prediction 
statistics for each CS are provided in Table S6. Accurate predictions were 
achieved, with the median prediction error in the test sets ranging from 
0.04 to 0.41 min across the eight CSs. The maximum absolute prediction 
error was 3.55 min for α-tocopherol (CS2), followed by catechol (2.45 
min, CS5). It is difficult to compare the performance of PredRet with 
other RT prediction tools as those only allow predictions within the 

same CS, while PredRet predicts RTs from one CS to another CS differing 
in mobile phase composition, gradient and flow rate. 

Despite accurate models being built for the CSs, we observed that 
early- and late-eluting compounds were generally omitted from pre-
dictions, likely due to their extreme polarity. Compounds unique to 
respective CSs (e.g., nobiletin in CS1, 2′,5′-dihydroxyphenylacetic acid 
in CS2 and 9-hydroxy-urolithin-3-glucuronide (isourolithin A glucuro-
nide) in CS14) did not obtain RT predictions as well as compounds that 
did not have sufficient RT data density in the RT area (e.g., N-(3- 
hydroxybenzoyl)glycine (2-furoylglycine) in CS19 and pinoresinol in 
CS22). Between 14 and 39% of the compounds in the CSs of the vali-
dation (test) set had experimental RTs that fall outside the estimated PI, 
showing that the PIs should be interpreted with caution, as previously 
noted in the original paper describing PredRet. The practical implication 
is that a proposed annotation for an experimental RT cannot be 
completely discarded even if the RT falls outside the proposed annota-
tion’s PI. A few limitations of PredRet were identified in our study that 
may be corrected in the future. Firstly, users have no information about 
the standards that have been considered for providing predictions in 
their CS: e.g., commercial or synthesised standard, analysed in solvent or 
spiked in a biological matrix. Secondly, PredRet algorithm recognises 
the entered compounds based on the main InChI layer only and there-
fore stereochemical information is ignored during RT prediction. 

3.4. Application of PredRet predictions for identification of plant food 
compounds in metabolomic studies 

The effectiveness of RT prediction using PredRet allowed the 
distinction of isomeric compounds. In Fig. 4A, 3-(3′,4′-dihydrox-
yphenyl)propanoic (dihydrocaffeic) acid with a predicted RT of 8.3 min 
(PI: 8.1 to 8.5 min) could be distinguished from its isomers, 4′-hydroxy- 
3′-methoxyphenylacetic acid (homovanillic) acid (PI: 8.5 to 9.0 min) 
and 3,4-dimethoxybenzoic acid (veratric) acid (PI: 9.3 to 9.6 min). In 
Fig. 4B, the predicted RTs of fisetin (PI: 9.8 to 10.7 min), kaempferol (PI: 
11.4 to 12 min) and luteolin (PI: 10.6 to 11.3 min) were also clearly 
distinguished, except for the narrow overlap in the PIs of luteolin and 
fisetin (10.6 to 10.7 min). This is particularly useful as an orthogonal 
parameter to eliminate hypotheses when identifying unknown features 
with the same m/z in untargeted metabolomics studies. In addition, as 
RTs of flavonoid conjugates (glycosides, glucuronides) differ from that 
of their aglycones, prediction of RT may help to distinguish between 
aglycones truly present in the samples and detected aglycones that are 
generated during the analysis as in-source fragments of glycosides or 
glucuronides. 

Another useful application of PredRet is aiding in annotation of rare 
plant food compounds in untargeted metabolomics studies, when the 
standards are not commercially available or difficult to synthesise. As 
soon as a user enters experimental data for a rare plant food compound 
in a CSs, PredRet provides RT prediction with PI for this compound in 
CSs where it has not been experimentally measured. For example, the 
contribution of tomatidine’s experimental RT (11.8 min) from CS1 
enabled the prediction of RTs in 15 other CSs, while formononetin 
(CS1), 8-hydroxy-urolithin-3-sulfate (CS14) and 8-deoxylactucin (CS7) 
enabled the prediction of RTs in 13 other CSs. To optimise this process, it 
is crucial that users who entered experimental RTs for rare compounds 
also enter experimental RTs for common compounds such as those 
suggested above. 

4. Conclusion 

PredRet, based on pairwise GAMs, was demonstrated to be a useful 
tool for obtaining a good number and highly accurate RT predictions for 
plant food bioactive compounds and their metabolites. Its use in 
untargeted metabolomics studies can definitely help for tentative iden-
tification, by eliminating hypotheses that do not fall within the pre-
dicted RT range, or when commercial standards are not readily 

Fig. 2. Network map illustrating compound coverage overlap. Size of node 
represents the number of compounds present in the dataset while the thickness 
and colour of edges represent the number of common compounds between the 
paired datasets. The thicker the edge, the larger number of common com-
pounds. Edge colours and denote low (<10) and high (>60) similarity 
of compounds, respectively. E: number of RT data entered into PredRet; P: 
number of new RT predictions made. 

D.Y. Low et al.                                                                                                                                                                                                                                  



FoodChemistry357(2021)129757

7

Table 2 
Statistics of PredRet retention time predictions for 24 liquid chromatographic systems (CSs) with an entry dataset of 467 plant compounds.  

Prediction statistics CS 1 CS 2 CS 3 CS 4 CS 5 CS 6 CS 7 CS 8 CS 9 CS 
10 

CS 
11 

CS 
12 

CS 
13 

CS 
14 

CS 
15 

CS 
16 

CS 
17 

CS 
18 

CS 
19 

CS 
20 

CS 
21 

CS 
22 

CS 
23 

CS 
24 

# Experimental RTs 
(# non-unique 
compounds) 

98 
(76) 

89 
(78) 

47 
(47) 

90 
(88) 

83 
(83) 

46 
(46) 

84 
(65) 

51 
(44) 

29 
(22) 

57 
(47) 

46 
(45) 

43 
(43) 

49 
(49) 

103 
(75) 

48 
(48) 

35 
(35) 

75 
(50) 

79 
(79) 

79 
(79) 

68 
(38) 

53 
(46) 

97 
(83) 

75 
(59) 

54 
(40) 

# Predictions made 623 603 245 323 215 152 157 91 4 309 518 241 131 309 466 314 198 387 366 45 278 744 627 96 
# Predictions made 

where experimental 
RTs are unknown 

559 539 216 262 157 113 111 69 3 272 479 203 100 252 429 286 156 313 293 27 240 667 572 67 

Total runtime (min) 26 16.5 26 12 12 45 37.1 50 32 25 7 14 65 30 16 5 50.1 15 12 20 135 6 7 12 
Median prediction 

error1 (min) 
0.07 0.10 0.19 0.12 0.15 0.23 0.41 0.76 NA 0.11 0.04 0.10 0.28 0.19 0.05 0.04 0.52 0.04 0.05 0.36 0.68 0.03 0.03 0.20 

Median prediction 
error1 (% of total 
run time) 

0.27 0.61 0.73 1.00 1.25 0.51 1.11 1.52 NA 0.41 0.57 0.67 0.43 0.63 0.31 0.80 1.04 0.27 0.25 1.80 0.45 0.50 0.43 1.60 

95% percentile 
prediction error1 

(min) 

0.39 0.51 0.71 0.41 0.51 0.81 1.66 1.79 NA 0.59 0.20 0.34 3.02 0.43 0.17 0.17 3.29 0.09 0.13 0.74 4.33 0.13 0.20 0.89 

Max prediction error2 

(min) 
0.59 0.88 1.12 0.48 0.78 1.11 2.48 2.15 NA 1.89 0.40 0.38 3.73 0.57 0.36 0.28 4.49 0.13 0.15 0.89 5.37 0.63 0.36 1.12 

Median width of 95% 
CI 

0.83 0.73 1.34 1.22 1.10 1.91 2.15 3.86 NA 1.25 0.47 0.99 2.94 1.54 0.85 0.48 4.67 0.73 0.93 1.69 8.78 0.33 0.56 1.01 

95% percentile of 
95% CI width (min) 

1.97 1.65 2.42 1.92 1.90 4.48 3.61 6.63 NA 1.89 1.74 1.93 6.83 2.65 1.75 1.73 8.52 1.71 1.71 2.69 15.7 1.14 1.58 1.61 

Max width of 95% CI 
(min) 

2.45 1.96 3.33 1.99 2.00 5.43 5.16 7.43 NA 2.10 2.00 2.05 8.92 3.60 1.96 1.97 9.75 2.00 2.00 2.96 17.3 1.90 1.94 1.90 

# Flagged 
compounds2 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1Based on compounds for which the experimental RT is known. NA = non-applicable. 2Compounds are flagged as suspicious by PredRet if the retention time (RT) is considered to be potentially incorrect, when the 
difference between the experimental RT and predicted RT is ≥twice the distance from the predicted RT to the outer limits of the prediction interval. CI, confidence interval. 
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available. PredRet predictions are precise enough to distinguish struc-
tural isomers. Our data sharing initiative and multi-laboratory study 
contributed to the expansion of the PredRet database with >1500 
experimental RTs in 24 CSs for >467 plant food bioactive compounds 
and their metabolites (>30 families). Importantly, as more experimen-
tally known RTs are entered, more RT predictions are generated and 
accuracy of the predictions increases. The PredRet database has grown 
considerably since its introduction and now contains 15,000 RT entries 
across 68 CSs. Overall, the database covers 4000 unique compounds, 
beyond plant food bioactive compounds. In comparison, spectral li-
braries such as the MassBank of North America (MoNa), contain mass 
spectra for >200,000 compounds, so there remains a large potential for 
RT sharing. If sufficiently developed to allow accurate RT prediction in 
any CSs, PredRet would facilitate comparisons between-studies and 
minimise the need to develop a consensus LC–MS method for plant food 
compounds. We thus invite the scientific community to contribute to the 
community-driven open access PredRet database as part of the global 
effort for annotation of the dark matter of metabolomes. We suggest that 
sharing of RT as well as collisional cross section data should be as 
commonplace in the future as sharing of MS/MS data to provide enough 

orthogonal data for unambiguous identification in metabolomics. 
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