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Abstract
Fossil-based plastic materials are an integral part of modern life. In food pack-
aging, plastics have a highly important function in preserving food quality and
safety, ensuring adequate shelf life, and thereby contributing to limiting food
waste. Meanwhile, the global stream of plastics into the oceans is increasing
exponentially, triggering worldwide concerns for the environment. There is an
urgent need to reduce the environmental impacts of packaging waste, a matter
raising increasing consumer awareness. Shifting part of the focus toward pack-
aging materials from renewable resources is one promising strategy. This review
provides an overview of the status and future of biobased and biodegradable
films used for food packaging applications, highlighting the effects on food shelf
life and quality. Potentials, limitations, and promising modifications of selected
synthetic biopolymers; polylactic acid, polybutylene succinate, and polyhydrox-
yalkanoate; and natural biopolymers such as cellulose, starch, chitosan, algi-
nate, gelatine, whey, and soy protein are discussed. Further, this review provides
insight into the connection between biobased packaging materials and innova-
tive technologies such as high pressure, cold plasma, microwave, ultrasound,
and ultraviolet light. The potential for utilizing such technologies to improve
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biomaterial barrier andmechanical properties aswell as to aid in improving over-
all shelf life for the packaging system by in-pack processing is elaborated on.

KEYWORDS
Biobased and biodegradable materials, Food packaging, Processing technologies, Food quality,
Shelf-life

1 INTRODUCTION

Food packaging protects and preserves the quality of the
food product, thus contributing to more sustainable food
value chains and limiting food waste (Lindh, Williams,
Olsson, & Wikström, 2016; Svanes et al., 2010; United
Nations, 2015). Polymers, that is, plastic materials, have
been widely used as food packaging materials for many
decades. Traditional polymers are produced from fossil-
based resources and the extensive use of plastics in food
packaging today is related to their superior properties,
technological innovations, and relatively low cost (Cha
& Chinnan, 2004). Conventional plastic materials rely on
nonrenewable resources, are nonbiodegradable, and in
many cases not fully recyclable. The massive consump-
tion of such materials thereby contributes to environmen-
tal challenges such as depleting natural resources, litter-
ing, and global warming (Mangaraj, Yadav, Bal, Dash, &
Mahanti, 2019; Schmidt Rivera, Leadley, Potter, & Aza-
pagic, 2019; Wohner, Pauer, Heinrich, & Tacker, 2019).
Increased public awareness of the environmental chal-
lenges related to conventional plastic materials and con-
sumer pressure for improved sustainability has triggered
the development of biobased, biodegradable food packag-
ing materials. Further, introduction and implementation
of the Single-Use Plastic Directive, expected to be issued by
the European Commission in 2020, may accelerate imple-
mentation of alternatives to traditional plastic materials.
According to the European Bioplastic Organization

(European Bioplastics, 2020), a plastic material is defined
as a bioplastic if it is either biobased (meaning thematerial
is [partly] derived from biomass as renewable resources),
biodegradable, or possesses both properties. Biopolymers
for food packaging are materials originating from agricul-
tural and marine sources and can be divided in three cat-
egories; polymeric materials produced by chemical syn-
thesis from bioderived monomers; polymeric materials
produced by microorganisms; and natural biopolymers
extracted directly from raw materials (Cha & Chinnan,
2004). A schematic of the classification of biobased and
biodegradable polymers is given in Figure 1 with examples
of polymers in the different categories.
Biodegradation is a polymer degradation process

assisted by microorganisms in which the material disin-

tegrates to water, carbon dioxide, biomass, and methane
(Guzman, Gnutek, & Janik, 2011; Meereboer, Misra, &
Mohanty, 2020). The biodegradation process depends
on the surrounding environmental factors such as tem-
perature, humidity, and presence of oxygen (aerobic or
anaerobic conditions) (European Bioplastics, 2020; Guz-
man et al., 2011). Specific environment such as industrial
composting plant, garden compost and soil, and the
material itself (e.g., composition, crystallinity, chemical
structure, and hydrophilicity) also have an impact, and
thus variation in both the process and outcome can
occur (Meereboer et al., 2020). Composting, also called
organic recycling, is an enhanced biodegradation under
specific conditions such as timeframe and temperature
and in the presence of microorganisms. Composting
implies that the material, in addition to biodegrading,
also becomes a part of usable compost and add nutri-
ents to the soil (European Commission, 2018). To be
certified and labeled as compostable, specific standards
must be fulfilled (e.g., EN 13432, refer to Section 8).
Fully organic packaging materials can be regarded as
biodegradable and compostable, whereas use of, for exam-
ple, co-monomers, additives, and cross linkers altering
the material network structure may reduce or enhance
the biodegradability of a material (Rasal, Janorkar, &
Hirt, 2010).
Biobased and biodegradablematerials typically have rel-

atively poor water vapor barrier properties andmechanical
properties, heat stability, and processing properties com-
pared to their fossil-based counterparts (Platt, 2006). Thus,
the challenges to achieve suitable barrier and mechani-
cal properties without compromising the biodegradability
limit their widespread acceptance and use (Nampoothiri,
Nair, & John, 2010). Use of commercially available biopoly-
mer films is limited to products with relatively short shelf
life or perishable products, for example, fruit and vegeta-
bles requiring respiration and humidity (Auras, Harte, &
Selke, 2004; Platt, 2006) in addition to long shelf life prod-
ucts such as dry pasta (Jabeen, Majid, & Nayik, 2015; Peel-
man et al., 2013).McMillin (2017) stated conventional plas-
tics are not likely to be replaced by biopolymers due to
their less suitable properties in meat packaging. However,
Nampoothiri et al. (2010) conclude that techniques such
as polymer modification, coating, blending, and use of
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F IGURE 1 Classification of biobased and biodegradable polymers on the basis of their origin (Cha & Chinnan, 2004; Cutter, 2006; Man-
garaj et al., 2019)

nanocomposites are likely to contribute to solve these chal-
lenges.
Food processing technologies are an indispensable aid

in preserving food products by prolonging shelf life
and ensuring food safety, besides contributing to better
resource utilization and a more stable food supply, which
are important factors in reducing food loss and food waste.
Nonthermal processing and advanced volumetric heating
(e.g., high-pressure processing [HPP], microwave [MW],
ultrasound [US], pulsed electric field, UV light [UV], cold
plasma [CP], etc.) have received significant attention in
the last decade in response to the increasing consumer
demand for safe, minimally processed, and value-added
products (e.g., fresh-like, healthy, long shelf life) (Euro-
pean Commission, 2013), because traditional thermal pro-
cessing, extensively used in the food industry, accounts
for a relatively high environmental footprint (high energy
usage) and undesirable effects on food nutritional (e.g.,
vitamin loss) and sensory (e.g., texture, color, and taste)
attributes (Pardo & Zufía, 2011). Besides nonthermal pas-
teurization, a palette of commercially sound applications
can benefit from such cutting-edge technologies, for exam-
ple, disinfection of food-contact surfaces; process opti-
mization (e.g., drying and freezing); extraction of intra-

cellular compounds; mitigation of food allergenicity; food
waste valorization; food/package functionalization, and so
on (Jermann, Koutchma, Margas, Leadley, & Ros-Polski,
2015; Pinela & Ferreira, 2017). The European Commis-
sion business innovation observatory has acknowledged
their timely and substantial contribution to manufactur-
ing efficiency (enhanced productivity, sustainable resource
management, and better self-sufficiency; streamlined sup-
ply chain logistics; reduced labor costs), food safety and
security (improved public health, reduced prevalence of
diet-related diseases, food recalls, and associated costs),
and green-shift (reduced food losses/waste and carbon
footprint; energy and water savings), while creating mar-
ket value through new cost-effective niche opportunities
(Augustin et al., 2016; European Commission, 2013, 2015;
Novel Q, 2011; Pardo & Zufía, 2011).
Overall, most innovative technologies (e.g., HPP, MW,

US, UV, and CP) support the so-called “in-pack” process-
ing, which prevents undesirable downstream recontam-
ination and packaging presterilization (e.g., by irradia-
tion or application of hydrogen peroxide), while enabling
new package types. Wherever “in-pack” solutions are not
feasible, application of, for example, UV or CP on the
package itself can avoid intensive sterilization of the food
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F IGURE 2 Schematic outline of the review paper

or the packaging system (European Commission, 2013,
2015; Pereira & Vicente, 2010). However, in both scenar-
ios, the exposed material may alter its structure and even-
tually its mechanical and barrier properties. Furthermore,
selected technologies are typically used toward improved
functionalization, coating and tuning properties of pack-
aging materials, and in the design of nanocomposites, an
aspect particularly interesting in the context of biodegrad-
able and biobased materials, where their shortcomings in
this respect, as compared to conventional plastics, very
often hinder market implementation. Although few avail-
able publications address the impact of such enabling tech-
nologies when combined with biobased, active, or intelli-
gent packaging systems, particular attention is expected in
the near future with regard to safety assessment (e.g., non-
intentionally added substances), evolution of mechanical
and barrier properties, and food–packaging interactions.
The co-utilization of biomaterials and innovative process-
ing technologies for food packagingmay aid in overcoming
thewell-known challenges related to industrial implemen-
tation of biomaterials.
The aim of this review is to provide an updated

overview of the status of biobased, biodegradable pack-
aging materials intended for food packaging applications
(Figure 2). The review is limited to studies focusing on
self-supporting films of biobased, biodegradable materi-
als for use as packaging material, that is, edible films and
paper-based packaging are omitted. The effect on food
quality and shelf life in biomaterial packaging systems
is highlighted. Further, potential of innovative technolo-
gies toward enhanced manufacture and functionality of
biobased packaging materials is assessed, as well as the
impact of such technologies on biomaterial performance
and subsequent interactionswith food counterparts during

in-pack processing. The review mainly encompasses stud-
ies published in the last 5 years.

2 SYNTHETIC BIOBASED,
BIODEGRADABLE POLYMERS FOR FOOD
PACKAGING

2.1 Polylactic acid

Polylactic acid (PLA) or poly (lactide) is one of the
most promising biobased polymers due to its availabil-
ity, compostability, biocompatibility, and properties close
to conventional fossil-based polymers. PLA is degradable
(biodegradable), but due to high melting point and glass
transition temperature it requires industrial composting at
55 to 60 ◦C (Meereboer et al., 2020; Urbanek et al., 2020).

2.1.1 Structure and properties of PLA

PLA is a partially crystalline thermoplastic polyester
(Table 1). It can be obtained by fermentation (from wheat
corn, rice, and sugar beets) or by chemical synthesis. The
chemical reaction of lactide (cyclic lactic acid diester)
formation is an intermediate step in the synthesis of
PLA, which in its chain can have two different optically
stereoisomeric forms: L (–) - lactide (S, S); D (+) - lac-
tide (R, R) and optically inactive meso-lactide. By chem-
ical synthesis, PLA is obtained by polycondensation or
ring-opening polymerization reactions to produce high-
molecular-weight polymers (Murariu & Dubois, 2016).
The racemic mixture of L- and D-lactide is called D–
L lactide, and L- and D–L lactide are used to produce
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TABLE 1 Selected biobased, biodegradable polymers with monomers and chemical structures

Note. The structure of chitosan displays a partially deacetylated chitosan.
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polymers. PLA properties vary depending on the rela-
tionship and distribution of the two stereoisomers or co-
monomers (Auras, Lim, Selke, & Tsuji, 2011). The optical
purity of PLA influences the ultimate properties of poly-
mers, such as structure, thermal, barrier, and mechanical
properties. Poly-L-lactic acid with over 93% of L-lactide is
a partially crystalline polymer, whereas a smaller propor-
tion of L-lactide gives amorphous polymers, so by chang-
ing this ratio, materials with different properties can be
obtained (Auras et al., 2011). Further, crystallinity of PLA
can be improved by chemical and physical modifications.
Usually chemical modifications include incorporation of
small molecules in PLA polymer structure (manipulation
on molecular level), whereas physical modification can
include addition of, for example, nanoparticles that are
going to act as nucleating agents and expand crystalline
regions in the polymer matrix (Pilić et al., 2015; Ristić,
Radusin, Pilić, Cakić, & Budinski-Simendić, 2013).
In comparison to conventional polymers, PLA cannot

meet all the requirements in the field of food packag-
ing. The values of the mechanical properties of PLA are
approximate to those of PS (polystyrene) but lower in
spinning with PET (polyethylene terephthalate). One of
the disadvantages of PLA as a food packaging material
is its poorer barrier properties (on water vapor, oxygen,
and other gases). Most authors have concluded even small
changes in the ratio of L- andD-enantiomers affect the bar-
rier properties of PLA, primarily due to the proportion of
crystalline regions in the polymer matrix (Farah, Ander-
son, & Langer, 2016). In addition to external factors, the
barrier properties depend on the degree of crystallinity,
that is, in the case of amore crystalline polymer, the path of
gas passage through the film is longer and thus the perme-
ability is lower. PET and PLA are hydrophobic polymers,
and they absorb minimal amounts of water, which is why
they are often compared and have similar barrier proper-
ties (Auras et al., 2011). Some of the average physical prop-
erties of PLA are listed in Table 2.

2.1.2 PLA film preparation

PLA has superior processing properties compared to other
biopolymers and can be processed by almost all known
processing techniques—injection molding, film extrusion,
blowmolding, thermoforming, and so on (Castro-Aguirre,
Iniguez-Franco, Samsudin, Fang, & Auras, 2016; Murariu
& Dubois, 2016). However, PLA processing is still a great
challenge as during thermal processing in polymer pro-
cessing processes, small variations in temperature lead to
a very rapid loss of thermal stability of the polymer itself.
In addition, the PLA processed by extrusion and injection
molding reduces the molecular weight, which certainly

affects the properties of the offset product (Auras et al.,
2011; Castro-Aguirre et al., 2016). The addition of plasti-
cizers can improve the properties of PLA during process-
ing, and typically uses low-molecular-weight plasticizers
based on lactic and glycolic acids (Rasal et al., 2010). The
PLA polymer begins to decompose at 300 ◦C and com-
pletely decomposes at 400 ◦C. Compared to conventional
polymers, PLA has similar thermal stability as polyvinyl
chloride (PVC), but significantly lower compared to PS, PP
(polypropylene), PE (polyethylene), and PET (Lim, Auras,
& Rubino, 2008).

2.1.3 Applications and commercial
availability of PLA

The PLA market has witnessed increased demand over
past years for various packaging applications (dry prod-
ucts and perishable products such as fruits and vegeta-
bles), resulting in increased production in Europe, the
United States, and Japan. The global PLA market was val-
ued at 700 million USD in 2019 with estimated increase
by 2025 up to 2,500 million USD (Clark & Singh, 2013;
Grand View Research, 2019; Markets and Research, 2020).
Key PLA resin companies in the industry are Futerro
(Belgium), NatureWorks LLC (Minnesota, USA), BASF
SE (Germany), Total Corbion (Netherlands), Hitachi Ltd.
(Japan), Sulzer Ltd. (Switzerland), Zhejiang Hisun Bioma-
terials Co., Ltd. (China), and ThyssenkruppAG (Germany)
(Grand View Research, 2019).
Benefits of using PLA for food packaging application are

reflected in the fact that it is compostable under industrial
conditions, produced from renewable sources, biocompati-
ble, recyclable, andhas potential to substitute conventional
plastic materials (Farah et al., 2016; Mangaraj et al., 2019).
It has also been approved as safe by the U.S. Food and
Agriculture Agency (U.S. Food and Drug Administration
[FDA]). However, due to inferior barrier and mechanical
properties, the application of PLA for food packaging is
currently limited. It is possible to design and balance the
properties of PLA by changing its chemical composition
and varying its molecular characteristics. Further, com-
bining PLA with other compounds allows for fine-tuning
properties to meet the requirements of different food prod-
ucts. Please refer to Section 4 on biomaterial modifications
and the review by Rasal et al. (2010) for detail on poten-
tial modifications of PLA. The prospects of PLA are that
this polymer becomes economical in production over time
and more extended use of PLA for different food packag-
ing applications is expected. For detailed information on
food packaging applications of PLA in recent literature,
focusing on the effect on product shelf life, we refer the
reader to Section 5.
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2.2 Polyhydroxyalkanoates

Polyhydroxyalkanoates (PHAs) are biobased polyesters
obtained through bacterial fermentation (Samui & Kanai,
2019). These biogenic polyesters can be obtained with pure
microbial cultures grown on different renewable sources
such as glucose under sterile conditions. However, PHAs
can also be produced from substances contained in waste
water (e.g., organic acids and sugars) from different indus-
trial processes (Colombo et al., 2019; Mannina, Presti,
Montiel-Jarillo, & Suárez-Ojeda, 2019). PHAs are gaining
much attention as a potential replacement for fossil-based
plastics not only due to the similarity between their physic-
ochemical properties with conventional plastics but also
due to the biodegradability of PHAs in different environ-
ments (Chan et al., 2019; Koller, 2014). For in-depth infor-
mation on the biodegradability of PHA, we refer the reader
to the recent review paper by Meereboer et al. (2020).

2.2.1 Structure and properties of PHA

PHAs are linear thermoplastic polymers that can be pro-
duced by many microorganisms as intracellular carbon
and energy stocks. Structurally PHAs are thermoplastic
polyesters of hydroxyalkanoic acids (HA) connected by an
ester bond (Table 1) (Akaraonye, Keshavarz, & Roy, 2010).
The arrangement of themonomerswithin the polymer and
the polymer chain length depends on the microorganism,
carbon source, and growth conditions used. PHAs are gen-
erally classified in twomain categories: small chain length
(scl)-PHAs with monomer units containing three to five
carbon atoms and medium chain length (mcl)-PHAs with
monomer units containing six to 14 carbon atoms (Zheng,
Chen, Ma, & Chen, 2020).
PHAs are among the most versatile groups of

biopolyesters with over 150 different types of monomer
available (Koller, 2014). However, only few PHAs are
produced on an industrial scale and available com-
mercially such as polyhydroxybutyrate (PHB), poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and
poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (Zheng
et al., 2020). PHBV is suitable for heat shaping and
producing flexible plastic bag used in the food packaging
sector (Zhao, Ji, Kurt, Cornish, & Vodovotz, 2019). PHAs
are mostly used as flexible food packaging with high
oil content such as marinated olives, cheese, and nuts
(Innocentini-Mei, Bartoli, & Baltieri, 2003).
PHA materials can range from highly brittle and crys-

talline thermoplastic to more elastomeric (Koller, 2014).
The scl-PHA co-polyesters possesses high plasticity and
accessibility to melt extrusion, injection molding, thermo-
forming etc. and as such can be considered as a suitable

candidate for food packaging applications. On the other
hand, as compared to scl-PHA, mcl-PHA shows latex- to
resin-like properties with extremely low glass transition
temperature,making them an interesting option to be used
as packagingmaterial for storing food at freezing condition
(Koller, 2014).
PHA polymers could have different properties depend-

ing on their chemical composition such as homo or co-
polyester, presence of contained hydroxyl fatty acids, and
so on. In general, PHAs are water insoluble, relatively
resistant to hydrolytic degradation, show good ultraviolet
resistance, but poor resistance to acids and bases, and are
soluble in chloroform and other chlorinated and nontoxic
hydrocarbons (Raza, Abid, & Banat, 2018). The hydropho-
bic character and board flexibility in mechanical features
PHAs make them promising materials to compete with
fossil-based plastics in the food packaging sector. Average
properties of PHAs are listed in Table 2.
PHAs could be produced with properties close to tra-

ditional food packaging materials such as PE, PP, or
PET. Moreover, due to the hydrophobicity of these water-
insoluble polyesters, PHA films display very high water
vapor barrier properties, close to low-density polyethylene
(LDPE). In addition, PHAs show high barrier properties
for oxygen, water, and CO2, making them suitable for pro-
ducing bottles for liquid food and CO2 containing liquids.

2.2.2 PHA film preparation

PHAs can be processed using different techniques depend-
ing on the molecular weight of the polymer and the
co-monomer content, including injection molding and
blow molding (Bugnicourt, Cinelli, Lazzeri, & Alvarez,
2014). Moreover, PHAs can be processed in different ways
to be used for different applications such as packaging,
molded products, paper coatings, adhesive, films, and so
on (Vahabi, Rohani Rad, Parpaite, Langlois, & Saeb, 2019).
Therefore, the processability, biodegradability, and natu-
ralness of PHAs have made these biogenic polyesters a
desirable candidate for different food packaging applica-
tions.

2.2.3 Applications and commercial
availability of PHA

One of the commercially available PHA products focused
on food packaging applications are Biopol™ produced
by Metabolix Inc. (USA) (Bajpai, 2019). Biopol™ pos-
sesses excellent film-forming and coating properties and
is mainly used to produce disposable food containers and
utensils. Telles, a joint venture between Metabolix, Inc.
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and Archer Daniels Midland Co., has produced Mirel™
bioplastics, which is a type of PHA (Color, 2009). Mirel™
can be processed into high-melt-strength grade bioplastics
suitable for low heat sag in thermoforming. They are suit-
able for awide range packaging applications, including hot
and cold cups, cup lids, yogurt containers, tubs, trays, and
single-serve food packaging.

2.3 Polybutylene succinate and
polybutylene succinate adipate

Polybutylene succinate (PBS) and its copolymers are a
family of commercially available aliphatic polyesters with
good biodegradability and compostability, wide window
for thermoplastic processing, balanced mechanical prop-
erties, and good thermal and chemical resistance (Chen &
Yan, 2019).

2.3.1 Structure and properties of PBS and
PBSA

The structure of PBS is composed of succinic acid and
1,4-butanediol monomers and is normally produced via
polycondensation of these two (Table 1). Traditionally, the
monomers used in PBS production are extracted from
fossil feedstock. However, the recent advances have also
enabled the production of these monomers from renew-
able biomass such as starch, glucose, xylose, and so forth
on an industrial scale (Chen & Yan, 2019).
The physical properties of PBS could be varied over a

very wide range via copolymerization with different types
and contents of monomers (Xu & Guo, 2010). The copoly-
merization of these aliphatic polyesters is a powerful and
efficient approach to tailor thematerial’s physicochemical,
mechanical, and gas barrier properties to fit specific appli-
cations such as in food packaging (Siracusa, Lotti, Munari,
& Dalla Rosa, 2015). Some of the physical properties of PBS
and PBSA are presented in Table 2.
PBS is a semicrystalline polymer with high crystalliza-

tion ability (χc = 35% to 45%) and a melting temperature
that is one of the highest among poly(alkylene dicarboxy-
late)s (Gigli et al., 2016). It has been reported that dur-
ing the contact with food simulant, a change between
crystalline and amorphous ratios of PBS and PBSA takes
place that eventually affects the permeability behavior of
these polymers (Siracusa et al., 2015). However, due to
the dependency of the sorption (thermodynamic parame-
ter) and diffusivity (kinetic parameter) processes of these
polymer on different factors such as polymer segments
and intersegmental packing, environment, temperature,
and so on, there is no linear relationship between crys-

tallinity and permeability (George & Thomas, 2001; Sir-
acusa et al., 2015). Another property that makes these
polyesters a good candidate for food packaging application
is that these materials are relatively reresistant to degrada-
tion when exposed to e.g. heat and light (Siracusa et al.,
2015).

2.3.2 PBS and PBSA film preparation

The melt processability and mechanical properties of PBS
and PBSA are closely comparable to those of widely used
fossil-based plastics in food packaging sector, such as PE
and PP (Vytejčková et al., 2017). Moreover, the excellent
melt processability of PBSs makes them very suitable for
extrusion, injection molding, thermoforming, and film
blowing. For PBS, the thermal stability of the polymer
vastly depends on the water content, the presence of resid-
ual carboxylic acid terminals, and the molecular struc-
ture of the polymeric chain (Chen & Yan, 2019). Extru-
sion and injection molding process can be used to process
PBS with molecular weight less than 100,000. However,
for film blowing and casting high melt strength is neces-
sary. Therefore, only PBS with higher molecular weight or
long-chain structure can be used for film blowing and cast-
ing to ensure smooth processing (Xu & Guo, 2010). Long-
chain branches intertwining brings high melt tension and
enables the production of stretch blown bottles (Barletta &
Cicci, 2019).

2.3.3 Applications and commercial
availability of PBS and PBSA

The mechanical properties and ease of processability have
made PBSs a very potential candidate for different food
packaging application, such as films and semi-rigid bowls
(Vytejčková et al., 2017). A copolymer of PBS and polybuty-
lene adipate, polybutylene succinate adipate (PBSA), has
also been identified as a suitable material for food pack-
aging applications due to the high crystallinity and good
thermal properties of the homopolymers (Puchalski et al.,
2018).
PBS has a global capacity of over 140,000 t/a, which was

12.8% of global capacity of biobased degradable plastics
reported in 2014 (Hu et al., 2015, 2019). Commercially avail-
able PBS and PBSA products include GSPLA R© (Mitsubishi
Chemicals), Bionolle™ (ShowaDenkoK.K.), Skygreen (SK
Chemicals), and BIOPBS™ (PTT MCC Biochem).
It could be concluded that PBS exhibits excellent ther-

moplastic processability with high crystallinity and glass
transition temperature below room temperature. More-
over, the mechanical properties of these polyesters are
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desirable with 300% to 500% of elongation at break and
are recognized as one of the most promising biodegrad-
able plastics for different commercial application includ-
ing food packaging. However, PBS has low impact strength
and tear resistance, which might limit its application (Hu
et al., 2019; Xu & Guo, 2010). Moreover, a considerable
decrease in the shear viscosity of PBS takes place when the
temperature is increased above 200 ◦C, which is not desir-
able in high-temperature processing and shaping. It is also
important to mention that the presence of more than 0.1%
water content in PBS can initiate hydrolysis reaction dur-
ing thermal processing (Xu & Guo, 2010).

3 NATURAL BIOBASED,
BIODEGRADABLE POLYMERS FOR FOOD
PACKAGING

In this section, the structure, properties, possibilities, and
limitations of some of themost relevant and promising nat-
ural biopolymers for food packaging films are described,
exemplified by the polysaccharides cellulose, starch, algi-
nate, and chitosan as well as protein films.

3.1 Structure and properties of natural
biopolymers

Polysaccharides, such as cellulose, starch, chitosan, algi-
nate, agar, guar gum, carrageenan, and pectin, are abun-
dant in nature as structural polymers. In general, they are
composed of linear or branched chains of one or more
types of alternating monosaccharides, for example, glu-
cose, fructose, mannose, and galactose (Smidsrød & Moe,
1995). Many polysaccharides have good film-forming prop-
erties and in addition their high accessibility, low cost,
biodegradability, and compostability make them desirable
candidates for use in more sustainable food packaging sys-
tems (Cazón, Velazquez, Ramírez, & Vázquez, 2017).
Cellulose holds the title of being the most abundant

renewable polymer in nature and can be isolated from
wood, cotton, hemp, and plant-based materials as well as
synthesized by microorganisms. Structurally cellulose is a
linear glucan of β (1 → 4)-linked glucose units (Table 1)
(Cazón et al., 2017). Cellulose is organized in crystalline
fibers and is insoluble in most solvents and is therefore
not a filmogenic polymer without modification or func-
tionalization (Cazón et al., 2017). In parallel to the cur-
rent renaissance of paper-based materials for food pack-
aging, research is focused on utilizing the vast cellulose
resources for film preparation. For instance, films of the
cellulose derivatives hydroxypropyl cellulose and methyl-
cellulose have been shown to have good gas barrier (O2

and CO2) and good fat resistance, though poor water resis-
tance (Villalobos, Chanona, Hernández, Gutiérrez, & Chi-
ralt, 2005). Cellulose acetate is obtained by acetylation of
cellulose. The polymer forms relatively clear films and is
currently applied for dry foods and fresh produce, though
its application areas are restricted due tomoisture sensitiv-
ity (Cazón et al., 2017).
Starches are glucans composed of linear chains (amy-

lose) and branched chains (amylopectin) of D-glucose
units coupled by α(1 → 4) and α(1 → 6) glycosidic link-
ages (Table 1) (Jiménez, Fabra, Talens, & Chiralt, 2012).
Starch in the formof granules is found in a variety of plants,
including potatoes, corn, rice, beans, and wheat, as energy
storage and is therefore highly abundant in nature. The
short-branched chains of amylopectin form the crystalline
regions of the starch, whereas the branching points of amy-
lopectin together with the linear amylose chains compose
the amorphous regions (Alcázar-Alay & Meireles, 2015).
Starch film formation is dependent on the fraction of amy-
lose (Liu &Han, 2005). Starch films have good oxygen bar-
rier properties due to their highly ordered network struc-
ture of amylose and amylopectin in alternating crystalline
and noncrystalline layers. Both the oxygen barrier prop-
erties and water sensitivity of starch films are improved
with increased crystallinity, that is, increasing level of amy-
lopectin (Cazón et al., 2017). The tensile strength of starch
films is relatively high,whereas due to the crystalline struc-
ture, the elastic properties are poor. Addition of plasti-
cizer can to some extent reduce the brittleness of the films
(Thakur et al., 2019). Different strategies have been stud-
ied to overcome the brittleness of starch films, for exam-
ple, blendingwith polyvinyl alcohol (PVA) (Gómez-Aldapa
et al., 2020;Wu et al., 2017). Further, crosslinking the starch
network is a common strategy to improve the films’ resis-
tance towater,while also contributing to bettermechanical
properties and thermal resistance (Reddy & Yang, 2010).
Starch is not inherently thermoplastic, but thermoplastic
starch (TPS) can be prepared by processing starch and plas-
ticizer in an extruder at high shear and pressure at 140
to 160 ◦C (Abdul Khalil et al., 2018; Jiménez et al., 2012).
Commercial TPS-based materials are on the market both
in the form of rigid trays and flexible films, for example,
the Mater-BI series of Novamont (Italy).
Alginates compose a versatile group of linear block

copolymers of two uronic acids: β-D-mannuronic acid (M
unit) and α-L-guluronic acid (G unit) linked together by 1
→ 4 glycosidic linkages (Table 1). Alginate is an important
structural polymer in the cell wall of marine brown algae
(Phaeophyceae) and is also produced by some soil bacteria
(Draget, Moe, Sjåk-Bræk, & Smidsrød, 2006). The fraction
and sequence ofM and G units in alginate are determinant
factors for its properties (Smidsrød &Moe, 1995). In partic-
ular, the length and distribution of G-blocks is important
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for its gel-forming potential as the G-blocks can align and
form complexes with di- or trivalent cations (typically cal-
cium, Ca2+), inter- or intramolecularly resulting in a gel
lattice (Skjåk-Bræk, Smidsrød, & Larsen, 1986). The gel-
forming properties of alginates can be utilized in film for-
mation as crosslinking has shown to improve the water
barrier properties and the mechanical properties of the
resulting material after solvent evaporation (Benavides,
Villalobos-Carvajal, & Reyes, 2012). Further, in compari-
son with films of other natural biopolymers, alginate films
generally have relatively good tensile strength, flexibility,
and mechanical strength and O2 barrier, while also being
relatively fat resistant (Shahabi-Ghahfarrokhi, Almasi, &
Babaei-Ghazvini, 2020). A benefit for food packaging is the
organoleptic properties of alginates, being relatively tasty
and odorless (Puscaselu, Gutt, & Amariei, 2019). Limita-
tions to the use of alginate films as food packaging mate-
rial are related to high permeability to water (Shahabi-
Ghahfarrokhi et al., 2020).
Chitosans are a heterogeneous group of cationic polysac-

charides prepared by alkaline deacetylation of chitin—
the major structural polysaccharide of the exoskeleton of
crustaceans and insects as well as in the cell walls of
some algae and fungi. The main commercial source of
chitosan is shellfish waste (Vårum & Smidsrød, 2005).
Chitosan is a linear polysaccharide of β(1 → 4)-linked 2-
acetamide-2-deoxy-D-glucose (acetylated, A-unit) and 2-
amino-2-deoxy-D-glucose (deacetylated, D-unit) (Table 1)
(Smidsrød & Moe, 1995). Chitosans can be prepared with
a wide range of acetylated units and chain lengths. The
fraction of acetylated units, fraction of acetylation (FA),
can vary from 0 (0% acetylated) to 0.7 (70% acetylated).
The nonpolar acetyl groups convey hydrophobic proper-
ties to chitosan and based on the FA, chitosan may be
considered as mainly an ampholyte or mainly a poly-
electrolyte (Nilsen-Nygaard, Strand, Vårum, Draget, &
Nordgård, 2015). Chitosan-based films typically have good
mechanical properties as well as low gas permeability (car-
bon dioxide and oxygen). However, as for most other natu-
ral biopolymers, the relatively highwater vapor permeabil-
ity (WVP) of chitosan films puts limitations to the applica-
tions (Elsabee &Abdou, 2013). Thoughmost commercially
available chitosans have low FA, it has been demonstrated
that chitosans of higher content of acetyl groups formmore
water-resistant films due to theirmore hydrophobic nature
(Kim, Son, Kim,Weller, & Hanna, 2006). Another interest-
ing aspect of chitosan is its inherent antimicrobial proper-
ties. The mode of action causing the antimicrobial activ-
ity is not yet fully understood; however, it is believed that
electrostatic interaction between positively charged chi-
tosan and negatively charged microbial cell membranes
plays an important role. This interaction assumedly leads
to increased membrane permeability and hydrolysis of the

peptidoglycans in the microorganism wall, inhibiting bac-
terial growth (Kong, Chen, Xing, & Park, 2010). Stud-
ies have shown that the antimicrobial effect is most pro-
nounced at low FA and at low pH (Younes, Sellimi, Rin-
audo, Jellouli, & Nasri, 2014), that is, higher charge density
of chitosan.
Protein-based films developed from, for example, wheat

gluten, whey protein, soy protein, corn protein, and
gelatine have gained much attention because of their
abundance, excellent film forming properties, low cost,
biodegradability, and compostability (Hassan, Chatha,
Hussain, Zia, & Akhtar, 2018; Zubair & Ullah, 2020). The
unique structure of the proteins, especially their high
intermolecular binding potential via covalent bonds, con-
fers a wide range of functional properties to the protein-
based films, often exceeding the mechanical properties
of polysaccharide and lipid-based films (Coltelli et al.,
2016). Wheat gluten protein is an agricultural biopoly-
mer containing water-soluble monomeric gliadins (molec-
ular weight between 30 and 50 kDa) and a water-insoluble
glutenin (up to 300 kDa), besides low-molecular-weight
proteins such as albumins and globulins. β-Lactoglobulin
is the major protein fraction in whey making up 57%
of the total protein, whereas α-lactalbumin is the sec-
ond most abundant whey protein. Soy protein consists of
two major globular proteins: β-conglycinin and glycinin
(Song, Tang, Wang, & Wang, 2011). Derived from colla-
gen in animal skin and bones (e.g., bovine and pork) and
in fish by-products (Etxabide, Uranga, Guerrero, & de la
Caba, 2017), gelatine consists of a pool of protein segments
carrying different molecular weights (100 to 300 kDa),
along with high-molecular-weight aggregates and pep-
tide fractions (<100 kDa). Both the origin and the extrac-
tion process influence the average molecular weight of
gelatine, hence its film forming capacity (Gómez-Estaca,
Gavara, Catalá, & Hernández-Muñoz, 2016). Furthermore,
the molecular weight of the protein and its distribution
influence film mechanical properties, as seen in differ-
ent soya protein fractions (Cho & Rhee, 2004), in addi-
tion to protein composition and their partial modifications
as investigated for wheat gluten fractions (Hernández-
Muñoz, Villalobos, & Chiralt, 2004).

3.2 Preparation of natural
biopolymer-based films

Solvent casting is the most common film-forming method
in which natural biopolymers are dissolved or dispersed
in appropriate solvent (e.g., water, ethanol, methanol, and
acetone or a combination of two) and mixed with plas-
ticizer (e.g., glycerol, polyols, mono-, di-, and oligosac-
charide, lipids, or mixed systems) depending on the
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film-forming biopolymer. The resulting solutions or dis-
persions are casted on a plate and dried to form self-
supporting films (Zhang & Mittal, 2010). However, sol-
vent casting is demanding in terms of required area and
drying times and therefore not suitable for industrial-
scale film production and research effort is focused on
developing preparation methods that are more suitable
for commercial use. Dry processes, such as thermoplas-
tic extrusion, take advantage of thermoplastic properties
of biopolymers exhibited when they are plasticized and
heated under lowwater content above glass transition tem-
perature, for example, TPS (González, Iturriaga, González,
Eceiza, & Gabilondo, 2020), and can be combined with
film blowing (Brandelero, Grossmann, &Yamashita, 2011).
Mendes et al. (2016) reported successful preparation of
corn starch/chitosan films by extrusion followed by hot
melt compression. Another emerging technology for film
preparation is the electrospinning technique, which is par-
ticularly beneficial in preparation of functional nanocom-
posite films (Zhao et al., 2020).

3.3 Limitations

Although films of natural biopolymers generally have rel-
atively good gas barrier properties, overall their functional
properties are inferior to those of conventional plastic
materials, such that they are mechanically weaker, more
brittle, and have higher WVP compared to fossil-based
plastics (Cazón et al., 2017). Examples of selected physical
properties of some natural biopolymers are displayed in
Table 2. They are also more susceptible to lipid oxida-
tion and microbial spoilage, the property ensuring their
“biodegradability,” and thus limiting the shelf life of these
packaging films as compared to petroleum-based plastics
(Robertson, 2009). Their inherent hygroscopicity makes
these films instable in humid environments and in contact
with foods with a high water content, posing a challenge
in optimizing their properties and identifying suitable
applications. Further, their mechanical properties put lim-
itations to their applications and processability at an indus-
trial scale; in most cases, natural biopolymer films cannot
be processed by industrial methods such as extrusion or
film blowing. Modifications and techniques for improving
properties of biodegradable materials are discussed in
Section 4.

4 MODIFICATIONS OF BIOBASED,
BIODEGRADABLEMATERIALS

To overcome the challenges pinpointed in Section 2 and 3
related to the use of synthetic and natural biopolymers for

food packaging films, to this end, physical, chemical, and
biochemical modifications, for example, plasticization,
thermal, chemical, and enzymatic cross-linking, ionizing
irradiation, pH alteration, incorporation of antimicrobial
or antioxidant compounds, lipids, and nanoparticles, are
applied during or after film formation to enhance the
structural, mechanical, and functional properties of the
polymers. This section gives a brief overview of some of the
most established chemical modifications as well as novel
and promising nanotechnology-based modifications of
biodegradable materials. For an in-depth review on plasti-
cization of biobased materials, we refer to the publication
by Vieira, da Silva, dos Santos, and Beppu (2011). The phys-
ical and thermal treatment of packaging materials (e.g.,
plasma treatment and MW) through the means of innova-
tive processing technologies is described in Section 6.

4.1 Lipids

One of the critical factors limiting extensive use of
biodegradable materials is their hygroscopic nature, caus-
ing them to absorb water and loose structural integrity.
One way of increasing the hydrophobicity of biomaterials
is addition of lipids, such as waxes and oils. The addition
of a hydrophobic phase, often by surfactant-assisted disper-
sion, has been reported to reduce the WVP of the materi-
als (Castro-Rosas et al., 2016). In a recent study, Syahida
et al. studied effect of different concentrations of palmwax
oil on the properties of fish gelatine films (Syahida, Ismail-
Fitry, Zuriyati, & Nur Hanani, 2020). The study reported
that at a concentration of palm wax oil of 15%, WVP of
the films was significantly reduced compared to the pris-
tine films. Similar effects have been reported for different
combinations of film-forming polymer and lipids; PLA and
beeswax (Lim, Kim, Ko, & Park, 2015), wheat gluten pro-
tein, acetic esters of mono and diglycerides and beeswax
(Rocca-Smith et al., 2016), and essential oils (EOs; e.g.,
thyme oil, rosemary oil, and cinnamon oil) from plants
contain volatile aroma compounds acting as antimicrobial
or antioxidative agents (Ribeiro-Santos, Andrade, Melo, &
Sanches-Silva, 2017). EOs are widely used in preparation
of active films. The hydrophobic nature of these oils has
been shown to have an additional effect on biodegradable
films in terms of reducing WVP (Atarés & Chiralt, 2016).
Active films and methods for incorporation of active com-
pounds such as EOs are described in Section 4.5. Other
described properties of films incorporated with lipids are
increased opacity, rougher surfacemorphology, and poorer
mechanical properties as the lipids do not contribute in
polymer network formation (Castro-Rosas et al., 2016).
These aspects imply careful optimization is necessary in
incorporating lipids into biodegradable film matrixes.
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4.2 Mixed biopolymer systems: Blends

Blending of polymers is an extensively used, low-cost tech-
nique for tailoring the properties of the resultant packag-
ing film by matching complementary properties of differ-
ent polymer types. The microstructure of polymer blends
depends on the net interaction between the polymers and
blending conditions such as temperature, pH, and ionic
strength. Blends of chitosan and PVA (Haghighi et al.,
2020), starch and PVA (Domene-López, Guillén, Martin-
Gullon, García-Quesada, & Montalbán, 2018), and chi-
tosan and starch films (Luchese et al., 2018) are some of
the promising polymer combinations recently studied for
food packaging applications. Compatibilization through
copolymerization is a collective term for different tech-
niques and additives used to improve the miscibility and
compatibility of polymers in blends, ensuring more homo-
geneous and stable films. For a comprehensive overview
on compatibilization of biopolymer blends, we refer to the
paper by Imre and Pukánszky (2013).

4.3 Crosslinking

The crosslinking method to improve biomaterial proper-
ties involves formation of chemical bonds between differ-
ent polymer chains, either intra- or intermolecularly, yield-
ing stronger and more tightly bound three-dimensional
networks. Type of crosslinking is often classified accord-
ing to bond type/type of interaction (covalent, ionic,
van der Waals, or H-bonds) or on the basis of mode
of action—chemical, physical, or enzymatic (Garavand,
Rouhi, Razavi, Cacciotti, & Mohammadi, 2017). Crosslink-
ing may improve the properties of biodegradable films.
For instance, tightening of the polymer lattice in biopoly-
mer films can restrict the movement of water molecules
through the film, resulting in a lower WVP. Wu and
coworkers studied citric acid (CA) crosslinking of potato
starch/chitosan and found that with 15% CA (per weight of
polymer), the WVP decreased from 3.03 × 10−12 g⋅cm/cm2

for noncrosslinked films to 2.05 × 10−12 g⋅cm/cm2 and
the degree of swelling decreased from 686.4% of initial
film weight to 98.1%. However, tensile strength increased
by 29%, which can be attributed to formation of shorter
elastic segments within polymer lattice (Wu et al., 2019).
Interestingly, the study also documented how an exces-
sive amount of CA resulted in poorer mechanical prop-
erties. This can be attributed to the plasticizing effect of
free crosslinker molecules (Garavand et al., 2017). Picchio
et al. studied the effect of crosslinking of casein films
with tannic acid on the mechanical, thermal, water resis-
tance, and degradation properties. They reported that ten-
sile strength of the crosslinked films increased while the

elongation at break decreased. Further, the water resis-
tance of the films was significantly improved compared to
the pristine casein films. Although noncrosslinked films
dissolved within 24 hr in water, crosslinked films were
still structurally intact after 7 days. Degree of swelling
was also significantly reduced (Picchio et al., 2018). In a
study by Cui and coworkers, enzymatic crosslinking of
gluten by transglutaminase—enhanced by α-polylysine—
was applied to prepare gluten films with improved
mechanical properties and better resistance to water (Cui
et al., 2017).

4.4 Reinforced biodegradable materials:
Biocomposites and bionanocomposites

For industrial food packaging applications, multilayered
structures consisting of different polymers are used for
suitable barrier and mechanical properties (Anukiruthika
et al., 2020). However, these complex structures increase
cost, require use of supplementary additives and adhe-
sives, and above all are mostly not recyclable or biodegrad-
able. To overcome these challenges, there is a strong
drive in the industry to develop more sustainable and
green packaging solutions with improved mechanical
and barrier properties. Polymer nanocomposites (PNCs)
offer these desired functionalities. PNCs are formed by
dispersing an inert, nanoscale filler throughout a poly-
meric matrix. These filler materials may include clay
and silicate nanoplatelets, silica (SiO2) nanoparticles (Wu,
Zhang, Rong, & Friedrich, 2002), carbon nanotubes (Chen,
Tao, Xue, & Cheng, 2005; Zhou, Shin, Wang, & Bakis,
2004), graphene (Borriello et al., 2009), starch nanocrys-
tals (Chen, Cao, Chang, & Huneault, 2008), cellulose-
based nanofibers or nanowhiskers (Bilbao-Sáinz, Avena-
Bustillos, Wood, Williams, & McHugh, 2010; Cao, Chen,
Chang, Stumborg, & Huneault, 2008), chitin or chitosan
nanoparticles (Lu, Weng, & Zhang, 2004), and other inor-
ganics (Ma, Qian, Yin, & Zhu, 2002). A tortuous pathway is
normally formed upon incorporation of nanomaterials in
the polymer matrix. The tortuosity created by nanofillers
affects diffusion rate of gas molecules (Nielsen, 1967) and
is the primary reason for the improved barrier properties.
Apart from tortuosity, polymer–nanoparticle interaction
can also influence barrier properties by immobilizing poly-
mer strands.
Khankrua et al. have studied the thermal and mechani-

cal properties of biodegradable polyester/silica nanocom-
posites. Nanocomposites of PLA, PBS, and PHBV with
hydrophilic fumed silica (0.1% to 5% per weight of poly-
mer)were prepared by twin screwextrusion. They reported
that although at low concentrations of silica (less than
0.5%), the tensile modulus was slightly increased however,
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at the higher silica loading it deteriorated because of the
interaction between the polar groups on surface of silica.
On the other hand, both elongation at break and impact
strength worsened at silica loading of more than 0.5%
(Khankrua, Pivsa-Art, Hiroyuki, & Suttiruengwong, 2013).
Zhang, Wang, and Cheng (2018) reported an improvement
in the tensile strength aswell aswater and gas barrier prop-
erties with the incorporation of nanosilica in potato starch
film.
A different approach using surface modification of

nanoparticles has also been reported to overcome the chal-
lenge of agglomeration and to obtain more homogeneous
distribution of particles in the polymer matrix. Lai and
Hsieh (2016) have reported PE glycol methyl ether grafted
silica particles via amino-silane. They reported better dis-
persion of modified silica particles in PLA matrix with
improved tensile strength compared to polymer compos-
ite with unmodified particles. Similarly, Yan et al. (2007)
and Zhu, Diao, Rong, and Cai (2010) have reported PLA
compositewith nanosilica graftedwith lactic acid and oleic
acid, respectively. Elongation at break of PNC with lac-
tic acid modified silica was improved by eight times (Yan
et al., 2007). Improved gas barrier properties have also been
reported for vapor-deposited thin silica and alumina films
on polymer substrates; however, these films are suscepti-
ble to cracking upon bending (Affinito et al., 1996; Leter-
rier, 2003). Apart from silica, other nanoparticles have also
been reported, for example, magnesium oxide (MgO)/PLA
composite with 25% improved gas barrier properties (Swa-
roop & Shukla, 2018).
Clays and other silicate materials are inexpensive, have

high stability, and are supposedly nontoxic. Nanoclay-
based PNCs are the foremost choice for food contact
application. Typical clays, for example, montmorillonite
(MMT), kaolinite, hectrite, and saponite, have been
reported for PNC application (Yano, Usuki, & Okada,
1997). Maiti, Yamada, Okamoto, Ueda, and Okamoto
(2002) have studied the effect of organic modifiers of
various chain lengths in different types of clays, smec-
tite, MMT, and mica on degree of dispersion of clay
in PLA. Smectite nanocomposites have shown better
gas barrier properties in comparison with MMT or
mica nanocomposites. Swaroop and Shukla (2018) have
reported nano-MgO-reinforced PLA films. Reinforced
PLA films with 2% MgO showed maximum improvement
in tensile strength and oxygen barrier properties (up
to 29% and 25%, respectively) in comparison to pristine
PLA films. Zahedi, Fathi-Achachlouei, and Yousefi (2018)
reported a dramatic increase in Young’s modulus from 25
to 40 MPa of MMT-reinforced carboxymethyl cellulose
(CMC) nanocomposite.

4.5 Active biomaterials

According to European commission regulation (EC) No
450/2009 “active materials and articles means materials
and articles that are intended to extend the shelf-life or
to maintain or improve the condition of packaged food”.
Active biomaterials are designed to deliberately incorpo-
rate components that would release or absorb substances
into or from the packaged food or the environment sur-
rounding the food. Furthermore, Framework Regulation
(EC) 1935/2004 provides specific requirements for active
materials and articles.
The manufacturing processes, including nanotechnol-

ogy, have been discussed in the food guidance provided
by the FDA. the approach of FDA toward nanotechnology
is summarized as, “FDA does not categorically judge all
products containing nanomaterials or otherwise involving
application of nanotechnology as intrinsically benign or
harmful. Rather, for nanotechnology derived and conven-
tionally manufactured food products alike, FDA considers
the characteristics of the finished product and the safety of
its intended use” (FDA, 2014). Readers who aremore inter-
ested in this topic and want to know more about the regu-
latory aspects of nanotechnology in different regions of the
world, we would kindly refer them to articles in this area
by Amenta et al. (2015) and He, Deng, and Hwang (2019).
In literature, active packaging is subcategorized into

antimicrobial packaging and addition of labels, sachets,
or pad. Antimicrobial packaging can be developed by
direct addition of the antimicrobial components through,
for example, solvent compounding, in the melt or as
nanocomposites and so on. Active components can also be
attached or coated to the surface (Ahmed et al., 2017).
Antimicrobial nanocomposites offer an extension in the

shelf life of the product by suppressing the growth of
microorganisms. Metal nanoparticles, for instance, silver,
titanium, copper, and zinc, have shown a great potential
for antimicrobial packaging application. Similarly, metal
oxide-based, such as zinc oxide (ZnO), MgO, and titanium
oxide (TiO2), antimicrobial packaging has been reported in
literature (Shankar & Rhim, 2016). More recently, antimi-
crobial packaging based on natural antimicrobials such
as EOs and their active components encapsulated in nan-
oclays or silica has shown a great promise (Melendez-
Rodriguez et al., 2019; Shemesh et al., 2015).
Bashir et al. have prepared novel biodegradable films

by blending guar gum, chitosan, and PVA with mint and
grapefruit peel extracts and crosslinked with nontoxic
tetraethoxysilane. The ultimate tensile strength and
elongation at break (%) values of the modified films
were reported to be 40 MPa and 104%, respectively.
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Furthermore, the higher antioxidant activity was
confirmed at 37 ◦C compared to 28 ◦C (Bashir et al.,
2018). Zhu et al. have reported a novel antimicro-
bial bilayer films based on PLA/Pickering emulsions.
The antibacterial activity was evaluated by agar disk
diffusion method against Staphylococcus aureus and
Escherichia coli (Zhu, Tang, Yin, & Yang, 2018). In a
study by Mayorga et al., antimicrobial nanocomposites
and electrospun coatings based on PHBV and copper
oxide nanoparticles were investigated. Reduction of
5 log colony forming units (CFU)/mL of Salmonella
enterica for the films prepared with 0.05% copper oxide
(CuO) was reported (Mayorga, Rovira, Mas, Mora-
gas, & Cabello, 2018). For profound reviews on active
agents and active packaging applications, the reader is
referred to Vilela et al. (2018) and Yildirim et al. (2017),
respectively.

5 BIODEGRADABLEMATERIALS FOR
FOOD APPLICATIONS: EFFECT ON FOOD
QUALITY AND SHELF-LIFE

In this section, an overview of recent studies on the use
of biodegradablematerials for real food applications is pro-
vided with emphasis on the effect on food quality and shelf
life. The search has been conducted on theWeb of Science,
limited to a period of 5 years (2015 to 2020) with use of
selected key words: “food packaging” and “shelf life”, com-
binedwith the different polymers. In Table 3, selected stud-
ies from this search are presented, describing applications
of biodegradable packaging materials for packing of spe-
cific food substrates, where the biomaterial is used asmain
packaging material (i.e., not as coating on or in combina-
tion with conventional packagingmaterials), as well as the
specific effect of these systems on food shelf life and/or
quality.
Studies related to the application and effect of

biodegradable films on real food products are rather
scarce. Most of the studies on biomaterials resulting from
the literature search stated potential applications in the
food packaging field. In addition, among the studies
addressing the impact on food products, almost none
use pristine materials. Most of the scientific articles
describe modified biodegradable films incorporated with,
for example, nanoparticles, extracts, antimicrobials,
and/or microencapsulation. Change in the organoleptic
properties of food products packaged in active films can
be a challenge due to the strong odor of, for example,
EOs. This aspect is often not discussed in scientific
studies.

5.1 Synthetic biobased, biodegradable
polymers

PLA is considered as a promising material for food
packaging application. It can be processed asmost conven-
tional polymers to flexible films, extruded packages, con-
tainers, bottles, cups, and lunch boxes. As already men-
tioned in Section 2.1, some limitations (e.g., poor barrier
properties) are reducing its wider application in food pack-
aging (Auras et al., 2004; Mangaraj et al., 2019; Platt, 2006;
Rhim&Ng, 2007). For this reason,most of the studieswere
related to the improvements of PLA properties by addi-
tion of nanoparticles and plasticizers and by application
of advanced processing techniques or treatments (Yildirim
et al., 2017). Moreover, it can be successfully incorporated
with diverse antimicrobial substances (plant extracts, EOs,
enzymes, etc.) (Radusin et al., 2019; Scaffaro, Lopresti,
Marino, & Nostro, 2018). Patanè et al. (2018) reported that
PLA is more suitable for packaging of fresh-cut long stor-
age tomato, as compared to PP films. The PP film promoted
a fog effect resulting in modification of the headspace
atmosphere,whereas PLAprevented any visiblewater con-
densation (anti-fog effect). The potential of PLA as packag-
ing material for red meat has also been reported (Panseri
et al., 2017). The main finding in this study was that PLA-
based packaging is a suitable material for preservation of
red cherry color in refrigerated red meat during its entire
shelf life, as compared to conventional packaging (PET).
PLA–PHB films have been applied for packaging of oysters
and compared to conventionally used high-barrier films
of ethylene vinyl alcohol (EVOH). However, the reported
extended shelf life was related to the addition of antimicro-
bial EOs rather than to the biomaterials used (Miao, Wal-
ton, Wang, Li, & Wang, 2019). Wen et al. (2016) reported
an increase in shelf life of pork meat by 4 days (at 25 ◦C)
compared to the control, by using a novel antimicrobial
packaging material obtained by incorporating cinnamon
EO/β-cyclodextrin (β-CD) inclusion complex into PLA
nanofibers via electrospinning technique. Studies related
to the application of PLA-based materials for food pack-
aging applications (dry food, fruits, vegetables, fresh and
processed meat, fish and sea products, etc.) have increased
substantially over the last 5 years due to the growing aware-
ness of environmental impact of plastic waste. Examples
include baby formula packed in PLA/whey protein iso-
late (WPI) pouches for delayed lipid oxidation (Phupok-
sakul, Leuangsukrerk, Somwangthanaroj, Tananuwong,
& Janjarasskul, 2017), minced fish or different fresh sal-
ads packed in PLA with addition of EOs (Llana-Ruiz-
Cabello et al., 2015; Llana-Ruiz-Cabello et al., 2016; Zeid,
Karabagias, Nassif, &Kontominas, 2019), and sliced salami
sausage and cottage cheese packed in PLAnanocomposites
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(Li, Li, Zhang, Yuan, & Qin, 2018; Vilarinho et al., 2018)
(Table 3).
The suitability of both PHA and PBS for food packag-

ing applications has already been discussed in Section 2.
Based on defined search criteria, just two articles reporting
the practical use of PBS-basedmaterials for food packaging
have been identified, as well as two articles demonstrat-
ing food packaging with PHA derivatives (Table 3). The
suitability of PBS and PBSA for vacuum packaging of raw
chicken, turkey, and smoked turkey meat was evaluated
by Vytejčková et al. (2017). It was suggested that although
the physical, chemical, and mechanical properties of com-
monly used polyamide (PA)/PE and PBS packaging mate-
rials are not the same, no significant difference in the qual-
ity and safety of packaged food was observed. A shelf life
test of salmon slices packed with PLA–PBSA bags (with
and without active compound) was carried out by Yang
et al. (2019). The shelf life of salmon slices was reported to
increase by 3 to 4 days during cold storage due to reduced
spoilage and deterioration.
Shelf life study of chicken breast fillets packaged

in bionanocomposite films with a composition of
PHBV/chitosan/ZnO/Ag gave significantly improved
sensory quality after 15 days of storage at 4 ◦C compared
to the control (unpackaged product) (Zare et al., 2019),
whereas PHB/polycaprolactone incorporated with nisin
and organoclays extended the shelf life of ham from 7 to
28 days stored at 5 ◦C (Correa et al., 2017).

5.2 Natural biobased, biodegradable
polymers

Films prepared frommodified celluloses have been applied
in some studies for food packaging applications. For
instance, shelf life of green tea was extended to 110 days in
pouches made by CMC incorporated with Thai rice grass
extracts microencapsulated powder (MP), as compared to
91 days in CMC pouches (Rodsamran & Sothornvit, 2018).
The quality of green tea packaged in CMC–MP was found
to be equivalent to that packaged in HDPE. In a study
by Halim et al., tannic acid was used to increase the per-
formability of methylcellulose films (Halim, Kamari, &
Phillip, 2018). The ability to prevent browning and drip loss
of grapes and cherry tomatoes was significantly increased
by adding 15% (w/w) tannic acid. However, commercial
cling film outperformed both modified CMC films. The
same effect was observed by combining CMC and gela-
tine when wrapping cherry tomatoes and grapes (Samsi,
Kamari, Din, & Lazar, 2019). Both browning and weight
loss were slowed down compared to unwrapped prod-
ucts, and 75% CMC:25% gelatin was comparable in perfor-
mance with commercial cling film. Adding okra mucilage

and ZnO nanoparticles is another way to increase the
performability of CMC (Mohammadi, Kamkar, Misaghi,
Zunabovic-Pichler, & Fatehi, 2019). The bionanocompos-
ite films significantly restricted microbial growth, lipid
oxidation, and total volatile nitrogen compared to a pure
CMC film when storing chicken breast fillets at 4 ◦C. ZnO
nanoparticles have also been used in combination with
chitosan–cellulose acetate phthalate, where the shelf life
of black grapes was increased threefold compared to con-
trol packaged in PE (Indumathi, Sarojini, & Rajarajeswari,
2019).
Cherry tomatoes wrapped in tapioca starch film exhib-

ited significantly lower microbial growth at day 3 and 10
of storage at 10 ◦C than unwrapped products. Further-
more, addition of chitosan nanoparticles increased the
antimicrobial effect (Shapi’i, Othman, Nordin, Basha, &
Naim, 2020). Starch from cowpea containing maqui berry
(Aristotelia chilensis) extract showed antioxidant effect and
slowed down lipid oxidation of salmon compared to neat
starch film (Baek, Kim,& Song, 2019). Using cassava starch
combined with EVOH and alginate resulted in a film with
equal performance to PVC film in a storage trial with
minimally processed lettuce (Lactuca sativa L.), with a
shelf life of about 4 days at 6 ◦C (Brandelero, Brandelero,
& de Almeida, 2016). However, the mass loss was eight
times higher using the biodegradable film rather thanPVC.
Nisa et al. (2015) showed a decrease in lipid oxidation and
reduced discoloration of fresh beef using active starch-
based films containing green tea extract.
Shelf life of hake (Merluccius spp.) fillets was increased

from 7 to 21 days when wrapped with alginate films con-
taining a mixture of EOs and citrus extract in combination
with ozonation with no change in pH and color of the fish
fillets during storage time at 4 ◦C (Shankar, Danneels, &
Lacroix, 2019). However, a further extension in the shelf
life to 28 days was observedwhen ozonation treatment was
replaced with gamma irradiation. It was suggested that a
desired shelf life of the fish fillets could be achieved by
the optimization of the combined treatment dose. Algi-
nate films containing carvacrol (CAR) microencapsulated
by β-CD were used to extend the shelf life of white mush-
rooms against Trichoderma spp. (Cheng et al., 2019). The
controlled release of CAR from the packaging film was
responsible for the enhanced antifungal activity.Moreover,
the senescence of the white mushrooms was delayed due
to the increased activities of active free-radical scaveng-
ing enzymes of the β-CD–CAR/sodium alginate (SA) films
to alleviate oxidative damage. CMC in combination with
carrageenan and grapefruit seed extract has been reported
to completely inactivate foodborne pathogenic bacte-
ria, Listeria monocytogenes and Escherichia coli, within
3 to 9 hr of application (Shankar & Rhim, 2018). A
gelatine–alginate film containing 75% fish gelatine and 25%
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alginate containing oregano EO was developed to increase
the shelf life of rainbow trout (Oncorhynchus mykiss)
(Kazemi & Rezaei, 2015). Strong antimicrobial effect of
oregano oil and restricted access of oxygen by the films
delayed the bacterial growth by 15 days during storage
at 7 ◦C. Sodium alginate–clay containing marjoram EO
films was reported to reduce L. monocytogenes, aerobic
mesophilic, and psychrophilic cell counts when applied to
trout slices (Alboofetileh, Rezaei, Hosseini, & Abdollahi,
2016). Rezaei and Shahbazi (2018) incorporated Ziziphora
clinopodioides EO (0% and 0.5%), apple peel extract (0%
and 1%), and ZnO nanoparticles (0% and 0.5%) into sauced
silver carp fillet using three techniques including direct
addition, edible coating, and composite film based on
SA/CMC to increase the shelf life (microbial, chemical,
and sensory properties) and inhibit the growth of L. mono-
cytogenes during refrigerated storage over a period of 2
weeks. It was concluded that the active coating and film
could be used to extend the shelf life and maintain the
quality of fresh fish fillets without adverse effects on the
organoleptic properties.
As for other reviewed biomaterials, few studies are

available on pristine chitosan films used in food packaging
trials. Among them, Priyadarshi, Sauraj Kumar, and Negi
(2018) investigated the effect on the shelf life of green
chilis packaged in chitosan pouches, both a neat chitosan
film and a chemically modified film crosslinked with citric
acid. Compared to unpacked products, the chilis packaged
in the chitosan material exhibited lower moisture loss and
better color preservation, the overall quality being slightly
improved in the crosslinked film. In another study, the
performance of neat chitosan versus modified chitosan
films incorporated with apricot kernel oil was studied for
bread slices packaged in pouches during 10 days of storage
at room temperature. The control was packaged in a LDPE
pouch. The study reports lower growth of molds on the
bread packagedwith chitosan films, bothwith andwithout
active compound, as compared to LDPE, and a longer shelf
life. The effect was most pronounced for the bread slices
packaged in the active films. The findings were attributed
to antifungal effect of both chitosan and apricot kernel oil
(Priyadarshi, Sauraj Kumar, Deeba, et al., 2018). Further-
more, several studies have been published on modified
chitosan films. Among them, the less complex film com-
positions involve incorporation of EO or other active com-
pounds into the chitosan films followed by solvent casting.
For instance, this includes the use of kombucha tea in films
for packaging of minced beef (Ashrafi, Jokar, & Moham-
madi Nafchi, 2018), ginger oil in films for packaging of
barracuda fish (Remya et al., 2016), and cinnamaldehyde in
chitosan/starch films for packaging of strawberries (Wang
et al., 2019). Looking into more complex bionanocom-
posite films, these involve incorporation of nanoparticles

in combination with one or more active compounds. An
example of such is chitosan/MMT/rosemary EO films
used for packaging of poultrymeat (Souza et al., 2019). Lin,
Liao, Surendhiran, and Cui (2018) studied electrospun
chitosan/ε-polylysine nanofibers and performed shelf
life studies on chicken fillets. Based on the findings in
available literature, it is evident that the use of antimicro-
bial compounds in the films allows for a broader use of
chitosan as a food packaging material.
Pristine protein-based films may not perform well

enough to replace conventional packaging materials;
however, by addition of active compounds, some of the
protein films reviewed hereafter exhibit a performability
exceeding that of the conventional polymer controls.
Gelatine films incorporated with catechin–lysozyme
were used for packaging of minced pork, with the con-
trol samples being packaged in PVC films. Analyses at
selected sampling times during cold storage revealed that
lipid oxidation and microbial growth were retarded for
samples packaged in the active gelatine films, resulting
in extended shelf life as compared to the control samples
(Kaewprachu, Osako, Benjakul, & Rawdkuen, 2015). In a
study by the same group, the effect of packaging Bluefin
tuna slices in fish myofibrillar protein films incorporated
with catechin-Kradon extract, with reported antimicrobial
and antioxidant properties, was examined. The control
samples were packaged in LDPE films. The active films
performed better than the LDPE films in delaying lipid
oxidation besides resulting in significantly lower total
viable counts (TVC) and better preservation of the red
color of the tuna, an important quality trait (Kaewprachu,
Osako, Benjakul, Suthiluk, & Rawdkuen, 2017). Zein films
incorporated with pomegranate peel extract (PPE) were
found to retard lipid oxidation and microbial spoilage of
the cheese. Interestingly, the study reports that the PPE
in the films did not significantly alter the sensory profile
of the cheese (Mushtaq, Gani, Gani, Punoo, & Masoodi,
2018). Ejaz, Arfat, Mulla, and Ahmed (2018) studied the
effect of gelatine films incorporated with clove EO and
ZnO nanorods for packaging of peeled shrimps inocu-
lated with bacterial suspension of L. monocytogenes and
Salmonella Typhimurium. The bionanocomposite films
could be heat sealed due to the thermoreversible gelling
properties of gelatine. The film composition with 2% ZnO
rods and 50% clove EO (w/w) in the gelatine matrix was
found to provide a complete bacterial inhibition after 7
days of cold storage. For the control, neat bovine skin
gelatine films, TVC was significantly higher throughout
storage, demonstrating the pronounced effect of the active
compound. Other studies in literature on protein-based
bionanocomposite films include combinations such as soy
protein/MMT/clove EO for packaging of Bluefin tuna fil-
lets (Echeverría, López-Caballero, Gómez-Guillén, Mauri,
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F IGURE 3 Intervention points for innovative technologies
across the packaging supply chain

& Montero, 2018), gelatine/nanoclay/ethanolic extract of
coconut husk for packaging of mackerel meat powder
(Nagarajan, Benjakul, Prodpran, & Songtipya, 2015), and
WPI/cellulose nanofiber/TiO2 nanoparticles/rosemary
EO for packaging of lamb meat (Sani, Ehsani, & Hashemi,
2017). Main observed effects on product quality and shelf
life are listed in Table 3.

6 COUPLING INNOVATIVE FOOD
PROCESSING TECHNOLOGIES AND
PACKAGING STRATEGIES FOR
EXTENDED SHELF LIFE

In the last decade, a considerable and rapidly expanding
body of literature, framed by a few comprehensive state-of-
the-art reviews (please refer to Kourkoutas, Chorianopou-
los, Nisiotou, Valdramidis, &Karatzas, 2016; Zhang,Wang,
Zeng, Han, & Brennan, 2019), has extensively docu-
mented mechanistic/operational insight and competitive
advantages of forefront processing technologies toward
microbiological food safety and quality. The purpose of this
section though is to assess their impact on material per-
formance and subsequent interactions with food counter-
parts during in-pack processing and/or storage, as well as
their potential toward enhanced manufacture and func-
tionality of packaging materials (Figure 3). Such interven-
tion criteria have therefore narrowed down the selection
of relevant technologies for further review (i.e., CP, HP,
MW, and US), besides shaping the section outline. To the
knowledge of the authors, just a few review articles (Guil-
lard, Mauricio-Iglesias, & Gontard, 2010; Morris, Brody, &
Wicker, 2007) address comprehensively packaging impli-
cations of novel food processing technologies. In addition,
biobased packaging systems have scarcely been studied in

relation to emerging processing; thus, conventional poly-
mers, biomaterials, and composites will be jointly covered
in a technology-dependent manner (5-year framework).

6.1 Role of innovative technologies in
production and safety of packaging
materials

Besides food processing, innovative technologies have typi-
cally been integrated in production of packagingmaterials,
including bio/nanocomposites, toward process optimiza-
tion and enhanced material performance.
Otherwise referred to as the fourth state of matter, man-

made plasma is typically sustained via an electric dis-
charge in a gas subset; the partially or fully ionized gas
assembles a bunch of subatomic and molecular entities
(reactive oxygen and nitrogen species [RONS]) besides
quanta of electromagnetic radiation (UV photons and visi-
ble light), all coexisting as nonplasma or thermal plasma
upon thermodynamic equilibrium (Ashok, Dwivedi, &
Vijay, 2008; Conrads & Schmidt, 2000). Although its com-
mercial exploitation largely relies on upgraded surface
features in advanced materials and a variety of usage
domains in electronics, textiles, glass, or paper, CP induced
at atmospheric pressure and room temperature has rapidly
emerged as a value-added, niche opportunity for biobased
applications (Ekezie, Sun, & Cheng, 2017).
Comprehensive reviews on CP (Ekezie et al., 2017;

Hati, 2018; Pahwa & Kumar, 2018; Pan, Cheng, & Sun,
2019; Pankaj & Keener, 2017; Tolouie, Mohammadifar,
Ghomi, & Hashemi, 2018; Zhang, Sang, et al., 2018) have
outlined its multipurpose applications in material science,
for example, surface ablation, cleaning and sterilization,
surface activation (enhanced surface energy), etching,
functionalization (improved adhesiveness, printability,
wettability, sealing, and veneering), and enhanced bulk
properties via chemical crosslinking and high-barrier mul-
tilayer depositional coating/grafting. Potential on conven-
tional polymers, biobased films, and active and intelligent
packaging systems has also been demonstrated. Such a
broad “application–material” combination range is illus-
trated hereafter and in Section 6.2.
Sensitivity to water of fish protein films, one of their

main limitations toward food packaging, has been reduced
through CP-induced cleaning and etching (Romani et al.,
2019). However, a bunch of literature has reported
increased hydrophilicity of CP-modified substrates, for
example, PA/PE, PET (more efficient than UV), and
PVA thin films (Bauer et al., 2017; Kiruthika, Nivetha, &
Shanmugavelayutham, 2019; Paneru et al., 2019), besides
improved surface adhesion and deposition (e.g., antimi-
crobial, antioxidant, oxygen barrier, or biodegradable
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coating and grafting), due to new oxygen-containing polar
functional groups (higher surface polarity and lower
water contact angle) and increased surface roughness: chi-
tosan and chitosan/ZnO nanocomposite onto LDPE (Al-
Naamani, Dobretsov, & Dutta, 2016); thymol onto PP car-
bonate (Bahramian, Chrzanowski, Kondyurin, Thomas, &
Dehghani, 2017); sodium octanoate and Auranta FV onto
the inner PE layer of CP-treated PA/LDPE using beef gela-
tine as carrier and coating polymer (Clarke et al., 2017);
hybrid organic–inorganic Cu composite thin films onto
CP-modified polycarbonate and c-Si (De Vietro, Conte,
Incoronato, Del Nobile, & Fracassi, 2017); bilayer PP/CMC
films with Zataria multiflora EO (Honarvar et al., 2017);
eugenol, grape seed oil, and rosehip seed oil onto CP-
activated (more efficient than γ-radiation) cellulose/chitin
substrate (Irimia et al., 2017); alginate and chitosan onto
LDPE containing summer savory extract (Rahmani et al.,
2017); starch onto CP-modified PET films (Wiącek, Jurak,
Gozdecka, & Worzakowska, 2017); chitosan (and DPPC)
onto PET and PS films (Jurak, Wiącek, Mroczka, & Łop-
ucki, 2017; Suganya, Shanmugvelayutham, & Hidalgo-
Carrillo, 2018); WPI onto PET, nylon film, and LDPE films
(Joo et al., 2018); nisin onto PLA (Hu et al., 2018); nanofib-
rillated cellulose and nisin onto CP-treated biaxially ori-
ented polypropylene (BOPP)/LDPE (Lu, Guo, Xu, & Wu,
2018); clove, argan oil, and chitosan onto PLA (Munteanu
et al., 2018); acryl-coated PP film (Vukušić Pavičić et al.,
2018); and CP surface modification of thyme EO encapsu-
lated in silk fibroin nanofibers (Lin, Liao, & Cui, 2019).
Overall, potential of CP surface modification alongside

antimicrobial coating has been demonstrated for diverse
substrates in the abovementioned articles, toward active
packaging and extended product shelf life. Furthermore,
CP-induced polymer surface disinfection has largely been
reported in literature; for example, 3 to 4 log/cm2 reduc-
tions (Salmonella Typhimurium, S. aureus, and E. coli
O157:H7) and >2 log/cm2 reductions (S. aureus, L. mono-
cytogenes, and E. coli) were achieved in glass, PE, PP, nylon
and paper foil, and on PA/PE beef packaging films (Bauer
et al., 2017; Puligundla, Lee, & Mok, 2016). Next to this,
potential of CP and CP-activated liquids for biofilm pre-
vention and removal has extensively been assessed on
diverse food contact/processing surfaces (please refer to
Flynn&Gilmore, 2018; Gilmore et al., 2018; Gupta &Ayan,
2019). Furthermore, solution plasma process (or sputter-
ing) has been proposed for synthesis of metal nanoparti-
cles andmetal–polymer composites with a broad spectrum
of antimicrobial activity, for example, Ag/polyacrylonitrile
hybrid fibers and alginate/gold and alginate/silver bio-
nanocomposites (Nam, MubarakAli, & Kim, 2016; Shi
et al., 2011; Watthanaphanit, Panomsuwan, & Saito, 2013);
for alginate depolymerization, due to enhanced bioactivity
of low-molecular-weight forms (Watthanaphanit & Saito,

2013); to confer biocidal properties to alginate gels against
pathogenic biofilms (Poor, Ercan, Yost, Brooks, & Joshi,
2014); and to develop alginate hydrogels with capacity for
sustained release of RONS and cytotoxic potential (Labay,
Hamouda, Tampieri, Ginebra, & Canal, 2019).
MWprocess,which refers to electromagneticwaveswith

a frequency of 300 MHz to 3000 GHz and a wavelength of
0.1 mm to 1.0 m, has been widely employed in materials
processing, polymer synthesis, energy industry, separation
process, food industry, nanomaterials synthesis, and so on
(Huang, Tang, Zeng, & Xu, 2020). MW process can cause
selective molecular vibration while transferring energy to
the materials. Compared to conventional methods, MW
method offers shorter reaction time, precise process con-
trol, and homogenous heat up of the reaction solution.
Due to the ability to heat up the reaction solution homoge-
nously, this process enables uniform nucleation and rapid
crystal growth, which allows formation of crystallites in
polymers with narrow size distribution. In recent years,
MW irradiation has beenwidely used as a powerful tool for
rapid and efficient synthesis of different biopolymers. MW
heating process has also been reported as a faster and effi-
cientmethod for biomass extraction, hydrolysis, and pyrol-
ysis process with improved product quality (Yuan & Mac-
quarrie, 2015).
Electromagnetic radiation created during MW irradia-

tion enhances structural stability of polymeric chains that
increases thermal stability, mechanical properties, migra-
tion ability, and gas permeability properties (oxygen and
nitrogen) (Wang et al., 2016; Yang et al., 2017; Zhong et al.,
2019). MW radiation can efficiently alter starch molecule
structure and change crystallinity and morphology of the
polymer (Zhong et al., 2019). Moreover, MW treatment can
improve the physicochemical properties of starch, such
as water absorption ability, gelatinization temperature,
swelling ability, and so on, which are considered impor-
tant for efficient food packaging application (Zhong et al.,
2019). Lin, Zhou, et al. (2019) studied the preparation and
physicochemical properties of hydroxypropylated starch
under MW assistance. They reported that the single chem-
ical modification takes a very long time to introduce the
hydroxypropyl group to the starch derivatives as compared
to the MW process. They also reported that MW radiation
not only reduced the reaction time, but also significantly
improved the product quality. El Knidri, El Khalfaouy, Laa-
jeb, Addaou, and Lahsini (2016) and Sebastian, Rouissi,
Brar, Hegde, and Verma (2019) reported the extraction of
chitosan and chitin from, respectively, shrimp shell waste
and fungal biomass usingMWirradiationwithhuge reduc-
tion in extraction time and high degree of deacetylation in
few minutes. It has been reported that the MW-assisted
polymerization process of lactic acid to produce PLA is
100 times faster than the convention heating method
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(Bakibaev et al., 2015; Singla, Mehta, Berek, & Upadhyay,
2014). However, theMWradiation did not cause any signif-
icant improvement in themechanical, thermal, and optical
properties of PLA.
Xing, Zhang, Ju, and Yang (2006) also reported shorted

reaction time during preparation of esterified starch
molecules. Moreover, it has also been suggested that the
polar hydroxyl group on the starch molecules absorbs the
MW energy and rotates and moves in the electric field,
resulting in chemical bond cleavage (Yao, Li, Liu, Wu,
& Jin, 2016). Yang et al. (2017) treated the waxy maize
starch with MW irradiation and reported that MW treat-
ment can destroy the crystal structure of the starch and
thereby increase the contact area between the surface of
the particles and the reagent.
Graft copolymerization is a well-known technique to

enhance specific properties of natural polymers without
affecting its intrinsic properties (Shavandi & Ali, 2019).
MW-assisted grafting method can produce faster free rad-
icals to initiate and propagate the grafting reaction more
effectively and thus results in higher polymer yield with
better physicochemical properties as compared to the con-
ventional grafting method where thermal heating is uti-
lized. Several researchers have reported MW-assisted graft
copolymerization of different natural polymers such as
alginate, chitosan, starch, cellulose, and so on with a very
precise control over the graft polymer, high yield rate, and
with superior properties (Akın & Işıklan, 2016; Huacai,
Wan, & Dengke, 2006; Singh, Tiwari, Pandey, & Singh,
2006).
Wang et al. (2016) developed MW-modified soy pro-

tein isolate and zein blend edible films for food packag-
ing application. MW-modified films showed 5% to 25%
increased breaking strength as compared to native films.
It was suggested that the improved mechanical proper-
ties were due to increased β-sheet content and decreased
α-helix, β-turn, and random coil contents in the blended
films caused the MW treatment. The surface of MW-
modified films was more homogenous and showed fewer
pores. Moreover, significant improvement in glass transi-
tion temperature and melting temperature was observed
in MW-modified films. The improved thermal proper-
ties were due to change in molecular structure of pro-
tein films caused by MW treatment, driving hydrogen
bonds, and hydroxyl groups to form a more compact
structure.
Within the food packaging area, research on nonther-

mal HPP application has beenmainly focused on the com-
patibility of this technology with existing or new packag-
ing materials, where HPP is applied to the formed film
rather than the film-forming solutions. Nonetheless, few
studies have shown that HPP studies have shown that
HPP can alter and improve the functionality of treated

biopolymer-based solutions and gelled systems prior to
forming food packaging films (Montero, Fernández-Dıáz,
& Gómez-Guillén, 2002).
For protein dispersions, HPP may lead to structural

changes by promoting protein unfolding, increasing pro-
tein surface hydrophobicity and free SH content, and
thus increasing the degree of crosslinking and thereby
obtaining denser and more uniform films with improved
mechanical properties, lower water solubility, and WVP
of amaranth protein films (Condés, Añón, & Mauri,
2015). Similarly, formation of new hydrogen bonds and
shorter critical helix lengths endorsed increased resis-
tance to the diffusion of water molecules in HPP-treated
pigskin-derived, gelatine film at the optimal combination
of pressure, holding time, and temperature (600 MPa for
30 min, at 20.5 ◦C) (Molinaro et al., 2015). HPP treat-
ment of PVA/chitosan films combined with 0.1% nano-
TiO2 enhanced the interaction among PVA, chitosan, and
TiO2 nanoparticles, which achieved higher film density
and homogeneity especially at 600 MPa, thus providing
improvedmechanical and barrier properties (Lian, Zhang,
& Zhao, 2016). HPP decreased molecular chain mobility
of PLA chains and tightened the network structure in
PLA/silver nanocomposite films enhancing the stiffness
and tortuosity and preventing water vapor or oxygen trans-
fer and migration of nano-Ag from the films (Chi et al.,
2018).
Reducing sizes of biopolymer aggregates/particles to

improve uniformity in film matrix might be a key element
in developing biodegradable thermoplastic polymer or
biodegradable particulate filler for food packaging. To this
end, potential of high-pressure homogenization has been
investigated in recent years toward utilization of plant-
based by-products such as starch (Fu, Wang, Li, Wei, &
Adhikari, 2011). High-pressure homogenization also pro-
duced films with better moisture barrier property, film
transparency, and higher tensile strength when compared
to ultrasound (US) and irradiation applied to potato peel
solutions (Kang & Min, 2010).
Ultrasonication is a high-energy-based technology that

operates in the region of 20 kHz to 1 MHz and used to
disperse the reactants and initiate as well as accelerates
reactions through collisions (Bera & Mondal, 2019). Sono-
chemical reactions are independent of acidity, basicity, and
dipole moment. Nowadays, sonication is also widely used
for the fabrication, surface modification, and dispersion of
nanomaterials such as Au, Ag, Pt, and so on, with various
sizes, shapes, and chemical and physical properties (Bera
& Mondal, 2019). US treatment can significantly increase
the tensile strength and puncture strength of protein films
as compared to the untreated films (Cruz-Diaz, Cobos,
Fernández-Valle, Díaz, & Cambero, 2019). These improve-
ments are mainly attributed to the increment of the
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molecular order of the polymer chain due to US treat-
ment and to a more rigid structure (Cruz-Diaz et al.,
2019). Moreover, it has also been mentioned by several
researchers that US treatment could produce an increase
in the exposition of hydrophilic and hydrophobic groups
by unfolding the protein chains; exposed groups could
form new bonds resulting in better mechanical proper-
ties of the films (Yilmaz, Turhan, Saricaoglu, & Tural,
2020). Liu, Wang, Lan, and Qin (2019) reported that US
can significantly improve solubility, thermal performance,
barrier properties, and bacteriostatic activity of PVA–tea
polyphenol composite films. It has been suggested that
sonication can loosen the polymeric structure and promote
release of active substances that could be a possible rea-
son for improved antimicrobial properties (Zhang, Wang,
Ma, et al., 2019). Mechanical and structural properties of
chitosan can be altered through controlled sonication time
and mixing between sonicated and nonsonicated compo-
nents due to the altered viscoelasticity and morphological
aspect of the mixture (Gomes et al., 2016). Cruz-Diaz et al.
reported that WVP of US-treated edible films made from
whey protein was lower than the heat-treated ones due to
better distribution of WPC lipids in the film (Cruz-Diaz
et al., 2019). US treatment can also improve emulsifying
properties of whey protein resulting in better lipid distri-
bution within the films. Moreover, polymeric films with
denser film networks generally exhibit lowerWVP and US
treatment can significantly increase the density of the films
as compared to the heat-treated films (Schmid & Müller,
2019). Selected examples on the implementation of inno-
vative technologies for (bio)material production are illus-
trated in Table 4, with special focus on their quantitative
impact on (bio)material functionality and safety.

6.2 Impact of innovative food
processing on package performance and
product shelf life

This subsection addresses the impact of innovative “in-
pack” processing and/or subsequent storage on material
performance indicators and eventually food safety and
stability.
CP exerts varying effects on structural, mechanical,

thermal, and barrier properties of packaging materials,
with power, holding time, carrier gas, and polymer nature
standing as the most influential parameters on surface
modification: no adverse effect on glass transition temper-
ature, overall migration and oxygen/WVP, and improved
thermal stability of PLA (Pankaj et al., 2014); structural
changes and reduced barrier properties of PP due to
etching and degradation (Vishnuvarthanan & Rajeswari,
2015); increased tensile strength, elongation, lightness,

printability (ink adhesion), moisture barrier properties,
glass transition temperature and biodegradability of defat-
ted soybean meal (DSM)-based edible film, and limited
oxygen availability due to CP polymer crosslinking (Oh,
Roh, & Min, 2016); no adverse effect on surface temper-
ature, optical characteristics, tensile strength, and strain-
induced deformation of glass, PE, PP, and nylon and
paper foil (Puligundla et al., 2016); lower WVP and higher
tensile strength of bilayer Zataria multiflora EO-coated
PP/CMC films (Honarvar et al., 2017); increased tensile
strength of alginate–chitosan/LDPE, with lower solubil-
ity for chitosan-based films (Rahmani et al., 2017); sig-
nificant changes in elongation at break and crosslinking,
but unchanged thermal stability and flexural properties of
starch/PET films (Wiącek et al., 2017); improved oxygen
barrier properties, tensile strength, and elongation at break
of whey-protein-coated PET (Joo et al., 2018); satisfying
mechanical properties and transparency of BOPP/LDPE
films coated with nanofibrillated cellulose and nisin (Lu
et al., 2018); antifogging and highly transparent properties
of PVA thin films (Paneru et al., 2019); and decreasedWVP
and solubility of fish protein films Romani et al., 2019.
Besides surface sanitization and enabling of microbi-

cidal coatings/gels (Section 6.1), enhanced microbiologi-
cal food safety and quality have also been recorded for
CP-treated polymers: retarded lipid oxidation and reduced
hardness of smoked salmon packaged in CP-treated DSM
films during storage at 4 ◦C (Oh et al., 2016); unaffected
color, lipid peroxidation, sarcoplasmic protein denatura-
tion, nitrate/nitrite uptake, or myoglobin isoform distri-
bution of CP-treated vacuum-packaged beef loins after
10 days followed by a 3-day aerobic storage at 3 ◦C (Bauer
et al., 2017); and improved release of thyme EO (TO) after
CP treatment of TO/silk fibroin nanofibers, leading to
approximately 6.1 log/g reductions of S. Typhimurium in
chicken and duck meat (Lin, Liao, et al., 2019). Further-
more, in-package CP technology, namely, the ability to
generate CP inside a sealed package, and its combination
with modified atmosphere packaging (MAP) have gained
growing interest in recent years as a food surface decon-
tamination technology (please refer to Ekezie et al., 2017;
Misra, Yepez, Xu, & Keener, 2019).
Microwave-assisted thermal sterilization (MATS) is

accepted by the FDA for commercial sterilization of
prepacked homogeneous and nonhomogeneous foods.
MATS has the potential to produce food with higher
quality, flavor, and longer shelf life (Zhang, Tang, Rasco,
Tang, & Sablani, 2016). The shorter processing time asso-
ciated with MATS is mainly responsible for the better food
quality based on reduced shrinkage, less loss of texture,
and greater retention in fresh-like appearance. The gas
barrier and morphological properties and free volume of
the polymer films used in food packaging application can
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TABLE 4 Selected examples on the implementation of innovative technologies towards enhanced (bio)materials

Technology
Material
composition/substrate Processing conditions Impact on material properties Reference

Cold plasma CP surface modification
of PVA thin film
(antifogging)

CP: Dielectric Barrier
Discharge (DBD);
Argon; 4.75 kV;
30 kHz (at 6.13% duty
cycle); 10 min

↓Contact angle (29.6 to 14.5◦),
↑hydrophilicity (polar functional
group), ↑roughness (0.26 to 0.65 nm),
↑antifogging and transmittance (86%)

Paneru et al., 2019

Grafting of eugenol and
rosehip/ grape seed oil
onto CP activated
cellulose/chitin blend
fibers

CP: Glass reactor (50 Pa
vacuum); Air or N2
(10 cm3/min);
1.3 MHz; 30 W; 15 min
γ-Irradiation dose: 5,
10, 20 kGy

Air CP (31.1% to 58.7% grafting) more
efficient than γ-irradiation (9.7% to
22.8% grafting).
Higher grafting degree for vegetable oils.

Irimia et al., 2017

CP surface disinfection
of glass, PE, PP, nylon
and paper foil

CP: DBD; Room air;
10 kV (pulsed); 1.25 A;
35 kHz; 208 W; 10 min

>4 log/cm2 ↓ for E. coli O157:H7 in 10 min;
3.0 to 3.5 log/cm2 ↓ for S. Typhimurium
and S. aureus
No significant differences (p > 0.05) in
physicomechanical properties as
compared to controls

Puligundla et al.,
2016

Microwave Soy Protein Isolate and
Zein Blended Film and
Zein Blended Film

60 ◦C and 350 W for
2 min

↑Breaking strength by 5% to 25%, ↑glass
transition temperature by 50%; ↑melting
temperature by 3.5%

Wang et al., 2016

Hydroxypropylated
starch

150, 200, 250, 300, 350,
and 400 W; 6 min

↑Transparency (4% to 8.81%); ↑the volume
ratio of the condensing volume (21.11%
to 33.11%); ↑hydrophilic (0.73 to
2.46 g/g), ↑hydrophobicity (0.67 to
1.01 g/g); ↓water evolution rate (46.91%
to 36.16%)

Lin et al., 2019

Waxy maize starch 1,600 W (160 W/g) for
5 min; 2,450 MHz
frequency and
repeated seven times

↓Molecular weight (21 × 107 to
1.82 × 107 g/mol) and the relative
crystallinity (19.58 to 2.91%); ↑onset
temperatures (69.90 to 75 ◦C); ↓DH
(13.40 to 10.20 J/g) and viscosities

Yang et al., 2017

Ultrasound US treatment of whey
protein edible films

35 kHz ultrasound
Bath; power 820 W
(50% power setting);
20.8 W ultrasonic
wave; 60 min

↑Firmness 3.7 to 5.7 N (US 10 min); after
storage for 15 days, total number of
colonies for control, US5min, US10min,
and US15min was 6.72, 5.98, 5.28, and
5.14 log CFU/g; mold and yeast for
control, US5min, US10min, and
US15min was 4.77, 4.17, 3.85, and 3.69
log CFU/g; ↓ascorbic acid content by
49.55% for control, 41.14% for US5min,
32.83% for US10min, and 44.24% for
US15min. ↓water vapor permeability
(0.1 to 0.75 gm mm K Pa−1 hr−1 m2);
↑tensile strength (0.7 to 0.9 Mpa);
↑puncture strength (0.5 to 1.2 MPa)

Cruz-Diaz et al.,
2019

(Continues)

influence the shelf life of shelf-stable foods (Dhawan et al.,
2014a). However, the gas barrier properties in polymer
packages may deteriorate under high-temperature and
high-moisture processes. Zhang et al. (2016) studied effects
of barrier properties (oxygen transmission rate [OTR] and

water vapor transmission rate) of packaging materials
on shelf life of mashed potato model food processed by
MATS. They reported that the gas barrier properties of
the polymers films were less affected by MW-assisted
processing compared to conventional retort process
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TABLE 4 (Continued)

Technology
Material
composition/substrate Processing conditions Impact on material properties Reference
Polyvinyl alcohol/tea
polyphenol composite
films

Ultrasonic frequency of
40 kHz and power of
50 W; 30 min

↑Bacteriostatic rate (95.5% ± 4.2%) and
(91.8% ± 3.7%) against Staphylococcus
aureus and Escherichia coli; ↑swelling
capacity (740.19% ± 64.67%) and
↓solubility (5.26% ± 1.31%)

Liu et al., 2019

Polyvinyl alcohol with
graphene oxide and
nano-zinc oxide films

Frequency of 40 kHz;
power of 50 W; 30 and
60 min

↑Growth inhibition of S. aureus and E. coli
to 99.59% ± 1.58% and 98.89% ± 1.16%
(after 1 hr US treatment)

Zhang et al., 2019

High-pressure
processing

Aqueous dispersions of
amaranth protein
isolate (5% w/w)

0.1 (control), 200, 400,
and 600 MPa for
5 min, at 6.5 MPa/s
followed by pressure
release at 20 MPa/s,
with the adiabatic
heating up to 33.5 ◦C;
a mixture of propylene
glycol and water
(30:70) as
pressure-transmitting
medium

Up to 165% ↑tensile strength; up to 74%
↑elastic modulus
Up to 42% ↓water solubility; 43% ↓water
vapor permeability
↓Contact angle (<50◦) indicating
↑hydrophilicity

Condés et al., 2015

1:1 mixture of PVA and
chitosan solution, with
TiO2 nanoparticles at
0.10% (w/v)

200, 400, and 600 MPa
for 15 min at room
temperature (23 ±
2 ◦C), with water as
the pressure medium

Up to 38% ↓film thickness and 6% ↓density
(especially at 400 MPa)
Up to 20% ↓water vapor permeability;
up to 7% ↓oxygen permeability
4.78 to 5.65% ↑elongation at break; up to
ca. 100% ↑tensile strength
Up to 28% ↓migration ratio of TiO2
nanoparticles after 11 hr

Lian et al., 2016

PLA film-forming
solution with Silver
nanoparticles (AgNPs)
at 3 wt.% or 5 wt.%

0, 200, and 400 MPa for
15 min at room
temperature, with
water as the pressure
transmitting fluid

Up to 51.5% ↓water vapor permeability
Up to 20% ↑tensile strength; up to 78%
↑elongation at break
Up to 18% ↓migration level at 40 days of
storage in film treated at 200 MPa

Chi et al., 2018

due to morphological and free volume change resulted
from the MW process.
Pressure-assisted thermal pasteurization (PATP) and

sterilization (PATS) extend use of HPP by taking advan-
tage of self-generated compression heating to achieve the
lethality of conventional thermal treatments, thus provid-
ing safe foods and superior quality in a shorter process
with lower maximum temperatures (Barbosa-Cánovas,
Medina-Meza, Candoğan, & Bermúdez-Aguirre, 2014).
Both processes, especially PATS with high temperature,
can cause structural and morphological alternation in the
packaging film including increased crystallinity, aging of
amorphous phase, delamination, and rubbery to glassy
state transition, thus compromising mechanical and func-
tional properties of, for example, PATS-treatedEVOH films
(Dhawan et al., 2014b), PLA films (Sansone et al., 2012),
PATP-treated PP and PE films (Filimon, Borda, Alexe,
& Stoica, 2016), and LDPE films (Yoo, Lee, Holloman,

& Pascall, 2009), besides affecting product quality of in-
packaged foods such as color (Ayvaz et al., 2012). An exten-
sive review by Mensitieri, Scherillo, and Iannace (2013)
discusses both reversible and irreversible effects on poly-
mer films, whereas requirements for flexibility, dimen-
sional stability, head space, and heat transfer properties of
packaging materials are also well dealt with by Marangoni
Júnior, Cristianini, Padula, and Anjos (2019).
Overall, the extent of PATP/PATS-induced changes

on materials may depend on the treatment temperature
rather than applied pressure intensity. For example, PATP
showed no significant effect on structure and morphology
of treated PLA films and their thermodynamics and
functional properties, compared to the detrimental effects
observed following PATS (Sansone et al., 2012). The migra-
tion behavior of gluten/MMT after 800 MPa for 5 min
at 40 ◦C showed no significant effects, whereas the film
did not withstand treatment at 115 ◦C (Mauricio-Iglesias,
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Peyron, Guillard, & Gontard, 2010). Furthermore, increas-
ing HPP temperature may affect the rate of migration
during subsequent storage, as observed for the antioxi-
dant, Irganox 1076, in HPP-treated PP (Caner & Harte,
2005). Additionally, the extent of PATP- and PATS-induced
changes differs between the type of materials subjected
to the treatment. PATS affected the barrier properties of
vapor-deposited oxide and nylon containing films, but
not those of aluminum foil and polyvinylidene dichlo-
ride (PVDC)–MA containing films (Bull, Steele, Kelly,
Olivier, & Chapman, 2010). No change in the mechanical
and thermal properties of PE was observed after PATP,
whereas PP/silicon oxide (SiOx) pouches underwent
significant modifications (Galotto et al., 2008). Further,
only the foil-laminated packaging materials showed
increased seal strengths when several plastic-laminated
(nylon/coextruded EVOH, nylon/PP, PET/aluminum
oxide/cast polypropylene (CPP), PET/PE) and aluminum
foil-laminated (PET/Al/CPP and nylon/Al/PP) pouches
with vacuum-sealed scrambled egg patties were subjected
to PATS (Koutchma et al., 2010). The OTR of nylon 6 and
nylon 6/nanocomposite films increased following 800MPa
for 10 min at 70 ◦C, but not that of nylon 6/EVOH (Halim,
Pascall, Lee, & Finnigan, 2009). Lastly, the composition of
in-packed foods and liquids can influence HPP impacts as
seen in significantly lower OTR of LDPE films treated in
contact with 95% ethanol compared to water (Yoo et al.,
2009). Similarly, changes in the mechanical, thermal, and
gas barrier properties of the HPP-treated PLA/SiOx/PLA
films were smaller when in contact with olive oil than
with water, which probably acted as a plasticizer (Galotto,
Ulloa, Guarda, Gavara, & Miltz, 2009).
US is an eco-friendly and nonthermal method that is

widely applied to inhibit microorganisms and improve
quality and shelf life of food products during processing
and preservation. Zhang et al. reported that the US treat-
ment can inhibit the growth of total number of colonies,
mold, and yeast in fresh-cut cucumber during storage
(Fan, Zhang, & Jiang, 2019). Moreover, US treatment is
reported to reduce the loss of weight, firmness, total sol-
uble solids, total color change, water mobility, and main-
tained cell wall integrity in fresh-cut cucumber during
storage. Hashemi (2018), São José (2015), Pinheiro, Ale-
gria, Abreu, Goncalves, and Silva (2015), and Vivek, Sub-
barao, and Srivastava (2016) reported the positive effect of
US treatment on safe and stable quality and physicochem-
ical properties of tomato, fresh-cut kiwifruit, Mirabelle
plum, watercress, parsley, and strawberry during storage.
The US treatment is also used in food membrane pro-
cessing for increasing the flux in dairy products (Cór-
dova, Astudillo-Castro, Ruby-Figueroa, Valencia, & Soto,
2020). The US treatment can act as a complementary tech-
nique for enhancing the physical stability of in-packed

food emulsions (such as mayonnaise) without the need of
expensive packaging materials (Gavahian, Chen, Mousavi
Khaneghah, Barba, & Yang, 2018). Ding, Zhang, Ahmed,
Liu, andQin (2019) evaluated the effect of sonication on the
performance of PVA/chitosan bilayer films during straw-
berry preservation. Improved physicochemical properties
of the strawberry indicated that the US treatment of the
films led to better maintenance of the food quality. A few
representative examples of the quantitative impact of inno-
vative technologies on biomaterial properties during food
processing are summarized in Table 5.

7 LITTERING ANDWASTE
MANAGEMENT

Waste is a major global issue causing negative impact
on our environment. Waste management systems vary
widely in different parts of the world. In Europe, more
than 40% of all municipal waste was recycled or com-
posted in 2016 (European Parliament, 2018). In some EU
countries (northern part of Europe), recycling alongside
incineration is most common while landfilling is almost
non-existent. Incineration combined with landfill is most
common in countries like France and UK, while land-
filling remains the most common practice in the eastern
and southern parts of Europe. In US, landfill or incin-
eration account for the majority of waste management
system and approximately 75% of plastic (from munic-
ipal solid waste) is deposited in landfill (United States
Environmental Protection Agency, 2020). Energy recov-
ery through incineration result in reduction of volume
of waste by 90% and weight by 75 of waste as in the US
by 90% and 75%, respectively (Gupta & Bais, 2020). How-
ever, incineration and landfill are also recognized as envi-
ronmental threats. In EU this is recognized as the most
harmful option for the environment, although one of the
cheapest, and target for landfilling of municipal house-
hold waste should be less than 10% in 2035 (European
Parliament, 2018).
Plastics has been recognized as a global environmen-

tal problem due to having negative impact on ecosystems
and human health. Littering, plastic pollution, andmarine
debris have in recent years received increasing attention.
According to the Ellen MacArthur Foundation, it is esti-
mated that as much as 8 tons of plastic enter the ocean
annually (Ellen MacArthur Foundation, 2016) and one
study (Jambeck et al., 2015) also indicates that the amount
will increase 10-fold from 2010 to 2025.
The global food packagingmarket has experiencedmas-

sive growth over the last decades. Attention has in many
cases been focused on optimization in packaging pro-
cess for improved efficiency and reducing the thickness
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of materials (down-gauging), rather than technologies and
processes designed for circular economy. Thus, handling
plastic packaging of food as linearmodels rather than striv-
ing for more holistic, circular systems contributes to that a
significant portion of plastic waste in many countries ends
up in landfill or is incinerated (Hahladakis & Iacovidou,
2018; Luijsterburg & Goossens, 2014; Radusin et al., 2020).
It is recognized that recycling is one solution to reduce
the need for production of virgin materials in addition to
diverting waste from landfill; however, only 9% of the plas-
tic produced since 1950 have been recycled (Geyer, Jam-
beck, & Law, 2017).
Lately, global attention on plastics has led to reassess-

ment of plastic value chains, and legislation related to
single-use plastics and plastic bags will be or has been
introduced in several countries (EllenMacArthur Founda-
tion, 2016). The approach and targets are to some extent
different in different parts of the world; in Australia,
the target is to phase out single-use plastic packaging,
whereas in China use of nondegradable plastic bags will be
reduced and in some municipalities banned within 2020
(IHS Markit, 2020). In other parts of Asia (in countries
in Southeast Asia), packaging regulations are more frag-
mented and without a detailed approach toward packag-
ing and packaging waste. Several countries have targets for
recycling/recovery and reduction of waste to landfill and
ban on plastic bags, whereas fewer have limitation related
to single-use plastic (Krishnan, Subramaniam, & Baecher,
2019). The European Union has committed to implement-
ing the UN Sustainable Development Goals, and in this
context all plastic packaging on the Europeanmarketmust
be either reused or recycled by 2030 (UnitedNations, 2015).
Challenges related to traditional plastic materials have

triggered the use of biobased and biodegradable packag-
ing materials. However, according to Ellen MacArthur
Foundation (2016) the reassessment of plastic value chains
should focus on recycling and reuse of plastic as the
first priority, and in that context, they indicate that
biodegradable plastics are not a good fit to meet these
defined ambitions. However, they recommend biodegrad-
able/compostable materials for targeted application such
as garbage bags for organic waste and in closed systems
(such as food packaging for events and canteens) where
risk of mixing with the recycling stream is low. However,
biodegradation and composting may also contribute to
direct waste away from landfills and lower methane emis-
sion. Further, biodegradable plastics on the market today,
for example, PLA, are typically only compostable under
controlled conditions. In relation to challenges with tradi-
tional plastics and littering/ marine debris, biodegradable
materials are therefore not necessarily a quick fix to this
problem, as pointed out by Ellen MacArthur Foundation
(2016).

In addition to organic recycling and energy recovery,
bioplastic packaging waste may also be suitable for reuse
and mechanical recycling. Environmental benefits are
achieved when, for example, virgin PLA is replaced by
PLA recyclate (Maga, Hiebel, & Thonemann, 2019). How-
ever, a separate recycling stream for PLA does not exist
(Wojnowska-Baryła, Kulikowska, & Bernat, 2020). Maga
et al. (2019) concluded that higher volume PLA input
in the waste stream would ease and improve the tech-
nologies, through optimized collection, sorting, and recy-
cling processes, and thereby encourage establishment for
of PLA recycling streams. In recycling of both bioplas-
tics and conventional fossil-based plastics, highest out-
come (yield and quality) is achieved when impurities are
reduced.
However, some challenges might be related to the recy-

cling and sorting process, for example, identifying differ-
ent types of plastics. The effect of, for example, PLA in
conventional fossil-based polymer depends on the type of
polymer. According to Bioplastic Europe, mixing of PLA
in PP (3% PLA in postconsumer recyclate) and PS (10% in
PS regranulates) does not negatively impact the quality of
the recycled material (European Bioplastics, 2017). How-
ever, only 0.1% PLA in PET results in opacification of recy-
cled PET, 0.3% causes yellowing, and 2% and 5% result in
agglomeration (Wojnowska-Baryła et al., 2020). PLA and
PET are both transparent and similar in visual appearance
and difficult to separate by the consumers. Thus, identifi-
cation or extra labeling is needed if the sorting takes place
at consumer level, aswell as education of the consumers. A
study performed in Norway has shown that central sorting
of municipal waste results in higher recycling rates com-
pared to different home sorting systems and waste collect-
ing points (Deloitte, 2019).

8 LEGISLATION

Food contact materials (all materials and articles intended
for food contact) applied in Europe must meet the
requirements set by the Framework Regulation (EC) No
1935/2004. Specific rules for plastic materials are set in
Regulation (EC) No 10/2011 (with amendments), with the
authorized list (positive list) for starting substance (inten-
tionally added substance) given in Annex I with defined
specific migration limits. Biobased plastic materials are
also subjected to these regulations and amendments may
include specification regarding biobasedmaterials, such as
Regulation (EC) no 2019/1338.
Legislation related to downstream handling of pack-

aging materials must also be fulfilled: EU waste legisla-
tion including Waste Framework Directive and the Pack-
aging and Packaging Waste Directive 94/62/EC. The main
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priority of this legislation is preventing production of pack-
agingwaste. It comprises principles for recusing, recycling,
and recovering packagingwaste, thereby reducing the final
disposal of waste. In recent revision of EU waste legisla-
tion, new and ambitious targets related to, for example,
landfill and recycling are described, in which biodegrada-
tion is included. Specific requirements are set in Annex
II related to composting and biodegradable packaging.
The nature of the biodegradable packaging waste shall
be such that it is capable to decompose to CO2, biomass,
and water by undergoing chemical, physical, thermal, or
biological decomposition. Biodegradable plastics can also
be recognized in relation to recycling—and organic recy-
cling. If a material is certified as compostable, it must
be biodegradable under specific conditions according to
international standards such as EN 13432 (“Packaging:
requirements for packaging recoverable through compost-
ing and biodegradation industrial composting of packag-
ing) (European Union, 2000) and/or EN 14995 (European
Union, 2006). The standard EN 13432 sets requirements
to, for example, disintegration: after 12 weeks at maxi-
mum 10% of the material fragments can be larger than
2 mm.

9 CONCLUSION

In the last couple of decades, the development of biobased
and biodegradable food packaging materials has experi-
enced a massive boost due to increased environmental
focus and willingness to focus the research agenda in the
direction of increased sustainability and toward a circu-
lar bioeconomy. However, in the same timeframe the use
of conventional plastics has also increased, and most of
this increase is as packaging material. Commercial use of
biobased and biodegradable food packaging materials is
still low compared to conventional materials, due to sev-
eral factors including technical andmechanical properties,
cost, legislation, safety, and after-life handling. Because
the main purpose of the packaging material is to pro-
tect the food it surrounds, the biobased solutions must
at least perform as good as conventional plastics, leading
to more complex biomaterials including incorporation of
active substances, biocomposites, and nanosized particles.
Such developments make the biomaterials more suited to
be combined with food processing technologies and better
protect the foodstuff with increased technical properties,
but also increase the complexity and cost and make them
more durable and less biodegradable. Biodegradable bio-
materials can already today replace conventional materi-
als for many foodstuffs; however, for other foods further
development is needed, including those involving process-
ing with increased temperature and humidity. Biomateri-

alsmight not be a quick fix to plastic littering or to decrease
the amount of fossil-based plastics used in short term. They
still need to be collected in thewaste streams and separated
from conventional materials for controlled composting or
recycling. There is still a need formore researchwithin this
field; conventional plastics have a century head start, but
biomaterials are closing the gap rapidly, with the develop-
ment leading us closer to a fully biobased food packaging
future.
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