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Management of genetic diversity aims to (i) maintain heterozygosity, which ameliorates
inbreeding depression and loss of genetic variation at loci that may become of
importance in the future; and (ii) avoid genetic drift, which prevents deleterious
recessives (e.g., rare disease alleles) from drifting to high frequency, and prevents
random drift of (functional) traits. In the genomics era, genomics data allow
for many alternative measures of inbreeding and genomic relationships. Genomic
relationships/inbreeding can be classified into (i) homozygosity/heterozygosity based
(e.g., molecular kinship matrix); (ii) genetic drift-based, i.e., changes of allele frequencies;
or (iii) IBD-based, i.e., SNPs are used in linkage analyses to identify IBD segments.
Here, alternative measures of inbreeding/relationship were used to manage genetic
diversity in genomic optimal contribution (GOC) selection schemes. Contrary to classic
inbreeding theory, it was found that drift and homozygosity-based inbreeding could differ
substantially in GOC schemes unless diversity management was based upon IBD. When
using a homozygosity-based measure of relationship, the inbreeding management
resulted in allele frequency changes toward 0.5 giving a low rate of increase in
homozygosity for the panel used for management, but not for unmanaged neutral loci,
at the expense of a high genetic drift. When genomic relationship matrices were based
on drift, following VanRaden and as in GCTA, drift was low at the expense of a high rate
of increase in homozygosity. The use of IBD-based relationship matrices for inbreeding
management limited both drift and the homozygosity-based rate of inbreeding to their
target values. Genetic improvement per percent of inbreeding was highest when GOC
used IBD-based relationships irrespective of the inbreeding measure used. Genomic
relationships based on runs of homozygosity resulted in very high initial improvement
per percent of inbreeding, but also in substantial discrepancies between drift and
homozygosity-based rates of inbreeding, and resulted in a drift that exceeded its target
value. The discrepancy between drift and homozygosity-based rates of inbreeding was
caused by a covariance between initial allele frequency and the subsequent change in
frequency, which becomes stronger when using data from whole genome sequence.

Keywords: inbreeding, genetic drift, optimum contribution selection, genetic diversity, genomic relationships,
genetic gain

Frontiers in Genetics | www.frontiersin.org 1 August 2020 | Volume 11 | Article 880

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00880
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.00880
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00880&domain=pdf&date_stamp=2020-08-13
https://www.frontiersin.org/articles/10.3389/fgene.2020.00880/full
http://loop.frontiersin.org/people/25467/overview
http://loop.frontiersin.org/people/180978/overview
http://loop.frontiersin.org/people/639317/overview
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00880 August 11, 2020 Time: 19:11 # 2

Meuwissen et al. Genomic Management of Genetic Diversity

BACKGROUND

Management of genetic diversity is usually directed at
maintaining the diversity that was present in some population,
which serves as a reference point against which diversity in the
future is compared. This reference population may be some
population in the past or the current population. In the absence
of genomic data, the accumulated change in diversity was
predicted to be a loss, and could only be described by inbreeding
coefficients (F) based on pedigree data. These coefficients are
the expectations of the loss in genetic variance relative to the
reference population in which all alleles are assumed to be
drawn at random with replacement, i.e., the classical base
population. This description as a loss of variance is strictly
for additive traits, but individual allele frequency at a locus
among individuals (i.e., 0, 1/2, 1) is an additive trait. In this
perspective, the management of genetic diversity comes down to
the management of inbreeding, in particular controlling the rate
of inbreeding (1F), or, equivalently, the effective population size:
Ne = 1/(21F) (Falconer and Mackay, 1996).

Optimal management of inbreeding in breeding schemes is
achieved by optimal contribution (OC) selection (Meuwissen,
1997; Woolliams et al., 2015) that, by construction, maximizes
the genetic gain made for a given rate of inbreeding. In
the era of genomics, Sonesson et al. (2012) concluded that
genomic selection requires genomic control of inbreeding, i.e.,
genomic optimal contribution selection (GOC). With OC, the
management of diversity within the population uses the form
1
2 c
′Ac where A is wright’s numerator relationship matrix and

c is a set of fractional contributions of candidates to the next
generation, and with GOC a genomic relationship matrix G
replaces A. This has direct correspondence with the substantial
literature on the use of similarity matrices and the fractional
contributions of species as measures of species diversity (e.g.,
Leinster and Cobbold, 2012). The similarity matrices in OC use
the idea of relationships, which are the scaled (co)variances of
breeding values between all pairs of individuals in a population
past and present, which links to the wider canon of genetic theory.

In the pre-genomics era, relationships were based on pedigree
and pedigree-based coefficients of kinship describing the
probability of identity-by-descent (IBD) at neutral loci that are
unlinked to any loci under selection. Within this subset of loci,
IBD results in a redistribution of genotype frequencies away
from Hardy-Weinberg proportions toward homozygosity
by p2

0 (1− F)+ p0F, 2p0
(
1− p0

)
(1− F) , and (1−

p0)
2 (1− F)+

(
1− p0

)
F for the genotypes AA, Aa and aa,

respectively, where p0 is the original frequency of the A allele
(Falconer and Mackay, 1996). This redistribution of genotype
frequencies links the changes of heterozygosity [expected to
reduce by a factor (1–F)], the within line genetic variance [also
reducing by (1–F)], and the genetic drift variance of allele
frequencies [p0(1–p0)F] to the inbreeding coefficient describing
the IBD of sampled alleles. These expected changes do not hold
for loci linked to the causal variants of complex traits (QTL),
where allele frequencies and genotype frequencies may change
non-randomly, and cannot be explained by IBD predicted
by pedigree alone.

When defining inbreeding as the correlation between uniting
gametes, Wright (1922) assumed the infinitesimal model, which
implies infinitesimal selection pressures with random changes in
allele frequency. However, the genome is of finite size, and for
complex traits with many QTL selection pressures will extend to
neutral loci in linkage disequilibrium (LD) across the genome,
and these associations to loci under selection result in non-
random changes of allele frequencies. This is particularly the case
for genomic selection schemes, where marker panels are large,
but not infinitely large, dense and genome-wide, and designed
to be in LD with all QTL, and where selection is directly for the
markers included in the panel. In this setting unlinked neutral
loci are likely to be rare, so the classical theory appears redundant.

Despite the apparent loss of a unifying paradigm, genomics
opens up a choice of tools that could be used to describe
genetic diversity that is wider in scope than the classical
genetic variance and inbreeding. For example, tools based on
genomic relationships (VanRaden, 2008), runs of homozygosity
(de Cara et al., 2013; Luan et al., 2014; Rodríguez-Ramilo
et al., 2015), and linkage analysis (Fernando and Grossman,
1989; Meuwissen et al., 2011). Some genomic measures may
be better suited for some purposes than others, and so the
question arises of what is the purpose of the management of
diversity in breeding schemes in addition to what tools to use.
Furthermore, when considering tools for genomic inbreeding,
there is a need to distinguish which aspect of inbreeding
they depict (IBD, heterozygosity/homozygosity, or genetic
drift), since in (genomic) selection schemes their expectations
may differ from those derived from random allele frequency
changes resulting in the genotype frequencies p2

0 (1− F)+
Fp0, 2p0

(
1− p0

)
(1− F) , and (1− p0)

2 (1− F)+ F
(
1− p0

)
.

Most molecular genetic measures of inbreeding are based on
the allelic identity of marker loci, and do not directly separate
IBD from Identity-By-State (IBS). Genomic relationship matrices
which are variants of VanRaden (2008) compensate for this by
measuring squared changes in allele frequency relative to a set
of reference frequencies. For the purposes of managing changes
in diversity relative to the reference population these frequencies
would be those relevant to this base generation (Sonesson et al.,
2012), although often the frequencies in the current “generation”
are used (Powell et al., 2010), or simply the subset of the
population for which the genomic data is available; see Legarra
(2016) for further discussion on these issues. Providing the
base generation is used to define the reference frequencies at
neutral unlinked loci (p0,k for locus k), the expectation of GVR2
(Method 2; VanRaden, 2008) is A, with all loci equally weighted
after standardization using the base generation frequencies. In
comparison, GVR1 (Method 1) can be viewed as simply re-
weighting the loci by 2p0,k(1− p0,k): i.e., for a single locus, GVR1
and GVR2 yield identical relationship estimates, and extending to
many loci GVR2 uses the simple mean of the single locus estimates
whereas GVR1 uses the weighted mean with 2p0,k(1− p0,k) as
the weights. Extending the argument of Woolliams et al. (2015)
for GVR1, since GVR2 is based on the squares of standardized
allele frequency changes, and the management of diversity using
GVR2 will constrain these squared standardized changes; this
measurement of inbreeding will be denoted as Fdrift [see Eq. (1B)
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in Methods section for a more precise definition]. When using
0.5 as the base frequency for all loci, as sometimes proposed, the
relationship matrix GVR0.5 is proportional to homozygosity and
molecular coancestry (Toro et al., 2014). Hence, GVR0.5 may be
used to measure homozygosity-based inbreeding, Fhom, and the
loss of heterozygosity (1–Fhom).

The use of a genomic relationship matrix, GLA, based on
linkage analysis for inbreeding management was suggested and
studied by Toro et al. (1998), Wang (2001), Pong-Wong and
Woolliams (2007), Fernandez et al. (2005), and Villanueva et al.
(2005). Here the inheritance of the marker alleles is used to
determine probabilities of having inheriting the maternal or
paternal allele from a parent at the marker loci instead of
assuming 50/50 inheritance probabilities as in A. GLA thus
requires pedigree and marker information, and IBD relationships
are relative to the (assumed) unrelated and non-inbred base
population as in A. In this way IBD is evaluated directly by
GLA, and is not simply an expectation for neutral unlinked
loci as described above for GVR2. If two (base) individuals are
unrelated in A then they are unrelated in GLA, whereas the
other measures also estimate (non-zero) relationships for base
population individuals. The marker data accounts for Mendelian
segregation which may deviate from 50/50 probabilities through
any linkage drag from loci under selection, or selective advantage.
GLA can be constructed by a tabular method, similar to that for
the pedigree based relationship matrix (Fernando and Grossman,
1989), and software for the simultaneous linkage analysis
of an entire chromosome is available (e.g., LDMIP (Linkage
Disequilibrium Multilocus Iterative Peeling); Meuwissen and
Goddard, 2010). GLA is a tool that specifically describes IBD
across the genome, hence we will denote this IBD based estimate
of inbreeding as FIBD.

A run of homozygosity (ROH) is an uninterrupted sequence
of homozygous markers (McQuillan et al., 2008). The exact
definition of a ROH differs among studies as a number of
ancillary constraints are added related to the minimum length
of a ROH measured in markers and/or cM, minimum marker
density, and in some cases an allowance for some heterozygous
genotypes arising from genotyping errors. The idea is that a
run of homozygous markers indicates an IBD segment, since it
is unlikely that many consecutive homozygous markers are IBS
by chance alone. The total length of ROH relative to the total
genome length provides an estimate of FIBD from the DNA itself,
and this estimate will be denoted FROH. The reference population
for FROH is unclear, although by varying the constraint on
the length of the ROHs the emphasis can be changed from
old inbreeding, with short ROHs, to young inbreeding, with
long ROHs (Keller et al., 2011). FROH may miss some relevant
inbreeding since IBD segments shorter than the minimum length
are neglected. On the one hand, FROH is an IBD based measure
of inbreeding, as it attempts to identify IBD segments (especially
when ROHs are long), but on the other hand it is a homozygosity
based measure of inbreeding since it is actually based on the
homozygosity of haplotypes (especially when ROHs are short).
However, FROH is a measure of inbreeding in a single individual
and is unsuitable for a measure of IBD within the population as
a whole. Therefore integration of ROH into a GOC framework

requires a pairwise measurement to form a similarity matrix,
GROH (de Cara et al., 2013).

The aim of this study is to: (i) re-examine the goals of the
management of genetic diversity in breeding schemes, and the
molecular genetic parameters that may be incorporated into
these goals; and (ii) compare alternative genomic- and pedigree-
based measures of inbreeding and relationships for addressing
the goals. In doing so the different tools discussed above and
some novel variants will be compared for their ability to generate
gain in breeding schemes while measures of inbreeding are
constrained. Finally, conclusions are made with respect to the
practical implementation of these tools for managing diversity
and how the outcomes will depend on whether whole genome
sequence (WGS) data is considered or marker panels.

MATERIALS AND METHODS

The Goals of the Management of Genetic
Diversity
Managed populations, such as livestock, will generally have many
desirable characteristics (related to production, reproduction,
disease resistance, etc.). Some of these characteristics are to be
improved (the breeding goal traits), without jeopardizing the
others. The latter is the aim of the management of inbreeding.
Specifically, breeding programs aim to change allele frequencies
at the QTL in the desired direction. This ultimately results in
loss of variation at the QTL as fixation approaches, but providing
these changes are in the right direction this loss of variation
is not a problem. However, genetic drift from our reference
population and loss of variation at loci that are neutral for the
selection goal are to be avoided for the following reasons. Firstly,
to alleviate the risk of inbreeding depression through decreased
heterozygosity, particularly for traits that are not under artificial
selection but are needed for the healthy functioning of the
animals. Secondly, deleterious recessive alleles may drift to high
frequencies, and occur more frequently in their deleterious or
lethal homozygous form; although mentioned separately this is a
specific manifestation of inbreeding depression. In the genomics
era, deleterious recessives may be identified and mapped
(Charlier et al., 2008), and if achieved recessive mutations may be
selected against (at the cost of selection pressures), or potentially
gene-edited. Nonetheless, simultaneous selection against many
genetic defects diverts substantial selection pressures away from
other traits in the breeding goal. Thirdly, loss of variation arising
from selection sweeps for the current goal may erase variation
for traits that are currently not of interest but may be valued
in the future and so limit the future selection opportunities.
Fourthly, genetic drift in the sense of random changes of allele
frequencies, and thus random changes of trait values, which
may be deleterious. This encompasses both the traits outside
the current breeding goal and within it, where drift is observed
as variability in the selection response. Moreover, large random
changes in allele frequency may disrupt positive additive-by-
additive interactions between QTL which have occurred due to
many generations of natural and/or artificial selection (similar
to recombination losses in crossbreeding; Kinghorn, 1980). In
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addition, random allele frequency changes may result in the loss
of rare alleles, which implies a permanent loss of variation.

Measures for Management of Inbreeding
Whilst genomics offers molecular measures for direct
monitoring, most obviously heterozygosity and frequency
changes measured from a panel of anonymous markers, the
strategy for management of these diverse problems using
genomics does not follow directly. For example, increasing
heterozygosity per se, achieved by moving allele frequencies of
marker loci toward 1/2 is not solely beneficial, as while potentially
ameliorating the aforementioned problems 1 and 3 it is
deleterious for problems 2 and 4. Both these empirical measures
of heterozygosity and the change of frequencies from drift can be
considered to be measures of inbreeding and diversity. Wright
(1922) states that a natural inbreeding coefficient moves between
0 and 1 as heterozygosity with random mating moves between
its initial state and 0: therefore, if a locus k has initial frequency
p0 and current frequency pt,k then a measure of inbreeding is
1− (Ht,k/H0,k) = 1− [2pt,k(1− pt,k)]/[2p0,k(1− p0,k)], which
can be generalized by averaging loci to obtain Fhom, i.e.,

Fhom = 1−
∑
loci k

2pt,k
(
1− pt,k

)
2p0,k

(
1− p0,k

)/NSNP (1A)

where NSNP is the total number of loci. Fhom can be negative when
heterozygosity increases due to allele frequencies moving toward
0.5. Similarly, drift can be measured as δp2

t,k = (pt,k − p0,k)
2,

scaled by the expected value for complete random inbreeding, i.e.,
δp2

t,k/[p0,k(1− p0,k)], and similarly averaged over loci to obtain
Fdrift, i.e.,

Fdrift =
∑
loci k

δp2
t,k

p0,k
(
1− p0,k

)/NSNP (1B)

and which is never negative. Fdrift is similar to the definition of
FST (Holsinger and Weir, 2009), which is here applied to a single
population over time instead of a sample of populations, and it
is this empirical measure that is being directly addressed when
using GVR2 .

For locus k in the set of neutral loci with frequency
p0,k in the base population and frequency pt,k = p0,k +

δpt,k in generation t, twice the frequency in generation t
is 2p2

t,k +Ht,k = 2(p0 + δpt,k), where Ht,k = 2(p0 + δpt,k)(1−
p0 − δpt,k), which holds for all loci assuming random mating.
With a sufficiently large subset of neutral loci with the same
base frequency p0 if E[δpt,k|p0] = 0 then taking expectations over
this subset 2E[p2

t,k] + E[Ht,k] = 2p0 and so 2(E[p2
t,k] − p2

0)+

E[Ht,k] = 2p0(1− p0). The first term is 2var(pt,k) and the second
is Ht and dividing through by 2p0(1− p0) gives

var
(
pt,k

)
/
[
p0
(
1− p0

)]
= 1−Ht,k/H0 ⇒ Fdrift = Fhom

(2)

Therefore if E[δpt,k|p0] = 0 over the range 0 < p0 < 1, there is
an equivalence of Fdrift with Fhom irrespective of initial frequency,

p0 (Falconer and Mackay, 1996): i.e., drift- and homozygosity-
based inbreeding are expected to be the same if allele frequency
changes are on average 0 irrespective of the initial frequency.

Using a form of GOC related to GVR1 (see Discussion), de
Beukelaer et al. (2017) explore the management of diversity
and derived the consequences for the rate of homozygosity,
2(δp2

t,k + 2δpt,k
(
p0 −

1
2
)
)/Ht,k. They suggested (supported by

results below) that the term δpt,k(p0 −
1
2 ), which represents

a covariance between allele frequency change δpt,k and initial
frequency p0,k across the loci k, may be non-zero. Consequently,
E[δpt,k|p0] 6= 0, and Equation [2] will no longer hold, and Fdrift 6=

Fhom. Supplementary Information 1 shows that any deviation
from Equation [2] for a general set of loci for which E[δpt,k] = 0
over the set, not necessarily with the same initial frequency, must
be explained by a covariance between allele frequency changes
and the original frequency cov(δpt,k; p0,k) and shows:

Fhom − Fdrift = 2cov(δpt,k/
√
p0,k(1− p0,k);

(p0,k−1/2)/
√
p0,k(1− p0,k)) (3)

i.e., if there is covariance between initial allele frequencies and
frequency changes, homozygosity and drift based inbreeding are
no longer equal. Therefore this covariance will be important in
determining the impact of genomic management, which aims to
manage both the increase of homozygosity and genetic drift.

Supplementary Information 1 explores why completely
random selection of parents (i.e., with no management) generates
no covariance and how different broad management goals for
diversity may generate a covariances of different signs. In
particular, with completely random selection, most markers drift
to the nearest extreme with the smaller change in frequency,
but a minority will move to the opposite extreme resulting
in the larger frequency change, giving a net result of no
covariance. The consequence of using GOC based on GVR2 is
that the latter large allele frequency changes are penalized more
heavily, since they add as δp2

t,k to the elements of GVR2 and
consequently to 1

2 c
′Gc. Hence, the hypothesis is tested below

that GVR2 emphasizes the movement of MAF toward 0, and
more generally allele frequencies move away from intermediate
values toward the nearest extreme, resulting in cov(δpt,k; p0,k) >
0 and var

(
pt,k

)
/[p0(1− p0)] + E[Ht,k/H0,k] < 1, contrary to

expectations in Eq. (2).
Conversely if G0.5 is used in GOC then there will be

pressure to move allele-frequencies toward 0.5 resulting in
increasing heterozygosity (Li and Horvitz, 1953). Supplementary
Information 1 shows that this results in cov(δpt,k; p0,k) < 0,
and thus Fhom < 0, and Fdrift > 0, and var

(
pt,k

)
/[p0(1− p0)] +

E[Ht,k/H0,k] > 1, again contrary to expectations in Eq. (2).
Furthermore the implication of these considerations is that the
covariance cov(δpt,k; p0,k) is a property of the active management
of diversity using squared frequency changes as in GVR2 (or
GVR1) and not as a consequence of directional selection. This
hypothesis was tested below in two ways: firstly by combining
the management of diversity using GVR2with randomly generated
EBVs, and secondly by using a panel of markers for managing
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diversity that is distinct from the panel used for estimating
GEBVs for genomic selection.

The term δp2
t,k/[p0,k(1− p0,k)] appearing in Fdrift can be

viewed as an approximation to the squared total intensity
(i2) applied to the marker, where i ≈ δpt,k/

[
p0,k

(
1− p0,k

)]
.

The approximation arises because the total selection intensity
applied to a marker is not linear with frequency (see Liu and
Woolliams, 2010). For example, after the initial generation, the
intensity applied to alleles moved toward 1/2 is overestimated,
since the denominator of i increases over time, which reduces
the actual intensity applied. The opposite holds for those
alleles moved toward the nearest extreme. Therefore a further
hypothesis is that a relationship matrix built upon i2, Gi(p),
rather than δp2

t,k may remove the covariance of the change in
frequency with the initial frequency that is generated using GVR2.
More details on this and the calculation of Gi(p) are given in
Supplementary Information 2.

In classical theory, the equivalence of Fdrift withFhom
under random mating is an outcome of considering IBD,
and management by IBD. The genomic relationship matrices
based on allele frequency changes or functions of these
changes no longer consider IBD as they only consider IBS.
Supplementary Information 3 considers the IBD properties of
the linkage analysis relationship matrix GLA which is derived
from the markers. Considering the management of diversity over
generations when using GLA, the conclusion of Supplementary
Information 3 is that δpt,k will now be determined by the
properties of the base population and not through linkage
disequilibrium generated in the course of the selection process.
Therefore, the covariance between the change in frequency and
its initial value is potentially avoided. This leads to a further
hypothesis tested below that if GLA replaces GVR2 in GOC
then Fdrift = Fhom and var

(
pt,k

)
/[p0(1− p0)] + E[Ht,k/H0,k] =

1, as expected in Eq. (2); i.e., consideration of IBD restores the
equivalence of Fdrift and Fhom for a set of neutral markers. If A
or a ROH-based GROH replaces GLA the same hypothesis may be
advanced given their focus on approximating IBD, however, both
are approximations to the true genomic IBD that is tracked by
GLA and so the equivalence may only be approximate.

In summary, there are a range of hypotheses to be tested
on three categories of relationship matrix: those based on
drift, changes in allele frequency or functions of them(
GVR1, GVR2, andGi(p)

)
; those based on homozygosity

exemplified by G0.5; and those based on IBD (GLA and
A). A relationship matrix based on ROH, GROH, is a
hybrid of the latter two, targeting IBD by measuring
homozygosity of haplotypes.

Breeding Structure and Genomic
Architecture
A computer simulation study was conducted to compare
these alternative GOC methods. The simulations mimicked
a breeding scheme using sib-testing, such as those used for
disease challenges in fish breeding, which is similar to Sonesson
et al. (2012). The scheme had a nucleus where selection of
candidates was entirely based on their genomic data and

performance recording was solely on the full-sibs of the selection
candidates which were also genotyped. This scheme may be
considered extreme in the sense that the candidates themselves
have no performance records, and is practiced in aquaculture
to prevent disease infections within the breeding population.
There were 2000 young fish per generation, and every full-
sib family was split in two: half of the sibs became selection
candidates and the other half test-sibs. The actual number of
families and their size depended on the optimal contributions of
the parents.

The genome consisted of 10 chromosomes of size 1 Morgan.
Base population genomes were simulated for a population of
an effective size of Ne = 100 for 400 (=4Ne) generations with
SNP mutations occurring at a rate of 10−8 per base pair per
generation using the infinite-sites model. This resulted in WGS
data for base population genomes that were in mutation-drift-
linkage disequilibrium balance. The historical population size
was chosen to equal the effective population size targeted for
the breeding schemes and so avoid any effect of a sudden
large change in effective population size. This resulted in 33,129
segregating SNP loci, which is relatively small in number due
to the small effective size of 100. From these loci NSNP = 7000
were randomly sampled as marker loci for use in obtaining
GEBV by genomic selection (Panel M); another distinct sample
of 7000 loci were randomly sampled as additive QTL, which
obtained an allelic effect sampled from the Normal distribution
(Panel Q); and a further distinct sample of 7000 SNP loci
were randomly sampled to act as “neutral loci” (Panel N),
which were used to assess allele-frequency changes and loss of
heterozygosity at neutral (anonymous) WGS loci, not involved
in either genomic prediction or diversity management. In the
majority of schemes Panel M was used for constructing genomic
relationship matrices for both obtaining EBVs and diversity
management. However, to test whether the non-neutrality of
the SNPs used for genomic prediction interfered with their
simultaneous use for diversity management, a further distinct
panel of 7000 randomly picked loci (Panel D) was used for
diversity management in some schemes.

True breeding values were obtained by summing the effects
of the QTL alleles across the loci in Panel Q, before scaling
them such that the total genetic variance was σ2

g = 1 in the base
population. Phenotypes were obtained by adding a randomly
sampled environmental effect with variance σ2

e = 1.5, resulting
in a heritability of 0.4. After the initial 400 unselected generations
to simulate a base population (t = 0), the breeding schemes
described below were run for 20 generations, of which the first
generation comprised random selection in order to create an
initial sib-family structure.

Genomic Estimates of Breeding Values
GEBV (̂g) were obtained by the SNP-BLUP method (Meuwissen
et al., 2001) where BLUP estimates of SNP effects were obtained
from random regression on the SNP genotypes of Panel M coded
as Xik = –2p0,k/

√
[2p0,k(1–p0,k)], (1–2p0,k)/

√
[2p0,k(1–p0,k)], or

(2–2p0,k)/
√

[2p0,k(1–p0,k)] for homozygote, heterozygote, and
alternative homozygote genotypes, respectively, of the kth SNP
of animal i, and p0,k is the allele frequency of a randomly chosen
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reference allele of the kth SNP in generation 0. The model for the
BLUP estimation of the SNP effects was:

y = 1µ+ Xb+ e

where y is a vector of records; µ is the overall mean; X is
a matrix of genotype codes as described above; b is a vector of
random SNP effects [a priori, b ∼ MVN(0, σ2

gN
−1
SNPI)], and e is a

vector of random residuals [a priori e ∼ N(0, σ2
e I)]. GEBV were

obtained as ĝ = Xb̂ where b̂ denotes the BLUP estimates of the
SNP effects. This model is often implemented in the form of
GBLUP using VanRaden (2008) Model 2, which assumes that all
loci explain an equal proportion of the genetic variance. When
simulating true breeding values, variances of allelic effects were
equal across the loci, which implies that the high-MAF QTL
explain more variance than the low-MAF QTL. Hence, there is
a discrepancy between the simulation model and that used for
analysis. However, such discrepancies always occur with real data.
To separate the effects of selection and inbreeding management,
one of the schemes described below randomly sampled GEBVs
from a Normal distribution each generation.

Assessing the Rates of Inbreeding at
Neutral Loci
Fhom and Fdriftwere calculated for each scheme, and since
discrepancies were anticipated (Supplementary Information 1)
1Fwas also calculated from both heterozygosity and drift to give
1Fhom and 1Fdrift. The calculations described below were done
for all schemes with Panel N which were both functionally neutral
in not influencing the breeding goal traits, and algorithmically
neutral in not being involved in the breeding value prediction.
Calculations were repeated for Panel M, and Panel D when used.

Heterozygosity
Calculation was based upon classical models where for generation
t (6locikHt,k/H0,k)/NSNP = 1− Fhom = (1−1F)t where 1F
is the rate of inbreeding, and NSNPthe number of loci in
the panel. A log transformation yields a linear relationship
log(6locikHt,k/H0,k)− log(NSNP) = t log(1−1F) ≈ −t1F,
where the approximation holds for small 1F when using natural
logarithms. This regression was calculated and provided both
a test of constant 1Fhom and an estimate of 1Fhom from
(−1)× slope of the regression.

Drift
At time t, Fdrift was calculated as 6loci k(pt,k − p0,k)

2/[p0,k(1−
p0,k)]. Analogously with heterozygosity, classical theory was
followed by taking logs of (1− Fdrift) with 1Fdriftestimated by
−1× slope from the regression on t.

Optimum Contribution Selection
Methods
In optimal contribution selection, the rate of inbreeding is
constrained by constraining the increase of the group coancestry
of the selected parents, G = 1

2 c
′Gc, where G denotes the

relationship matrix of interest for managing diversity among the

selection candidates, and c denotes a vector of contributions
of the selection candidates to the next generation, which is
proportional to their numbers of offspring. Therefore the group
coancestry is the average relationship among all pairs of the
parents, including self-pairings, weighted by the fraction of
offspring from the pair assuming completely random mating.
Furthermore, the genetic level of the selected animals, ḡ = c′ĝ,
is maximized weighted by their number of offspring. Hence, the
optimisation is as follows:

maximize ḡ = c’ĝ by varying c

with constraints : K =
1
2

c’Gc

6j males cj =
1
2

6j females cj =
1
2

cj ≥ 0 for all j.

A number of relationship matrices were investigated for
managing the diversity: (i) the pedigree-based relationship
matrix A; (ii) the genomic relationship matrix GVR2 = XX′/NSNP
(VanRaden, 2008; Model 2) constructed using Panel M; (iii) the
genomic relationship matrix GVR1 = ZZ′/6locikH0,k (VanRaden,
2008; Model 1) constructed using SNP Panel M where Zij =(
−2p0j

)
, (1− 2p0j), or

(
2− 2p0j

)
; (iv) G0.5, a homozygosity

based matrix of relationships, since its elements (i,j) are
proportional to the expected homozygosity of progeny of animals
i and j (Toro et al., 2014); (v) GLAconstructed from Panel M using
linkage analysis (Fernando and Grossman, 1989; Meuwissen
et al., 2011); (vi) a novel relationship matrix Gi(p) constructed
from squared total applied intensities using Panel M (see
Supplementary Information 2); (vii) the genomic relationship
matrix GROH based on ROH assessed using Panel M following the
method of de Cara et al. (2013) (see Supplementary Information
2); (viii) a genomic relationship matrix GVR2 constructed using
Panel D instead of M. In this replicated simulation study,
the calculation of GLA by LDMIP (Meuwissen and Goddard,
2010) was computationally too demanding and instead, a
haplotype-based approach was adopted as an approximation (see
Supplementary Information 2).

Implementation of Selection Procedures
The selection schemes simulated will be denoted by the
relationship matrix used in GOC and the panel of markers used
for SNP-BLUP and building the relationship matrix. The panel
for SNP-BLUP was either “M”, or “∼” when using randomly
generated GEBV. The latter implements a scheme without
directional selection, and tests whether observed results are due
to selection or due to diversity management. The panel for
management of inbreeding was either “M,” “D,” or “∼” when
using A which required no marker panel. Therefore a total of 9
schemes contribute to the results presented: 6 of which are of the
form G(M,M) where G is either GVR1, GVR2, G0.5, GLA, Gi(p), and
GROH; with the remaining three being A(M,∼), GVR2(M,D), and
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TABLE 1 | The relationship matrices and marker panels that were used for the
alternative breeding schemes.

Marker Panel1 F-management

Scheme2 EBV-estimation F-management Matrix3 Type of
measure

GVR2(M,M) M M GVR2 Drift

GVR2(M,D) M D GVR2 Drift

GVR2(∼,M) ∼ M GVR2 Drift

GVR1(M,M) M M GVR1 Drift

Gi(p)(M,M) M M Gi(p) Drift

G0.5(M,M) M M G0.5 Homoz.

GROH(M,M) M M GROH Homoz.

GLA(M,M) M M GLA IBD

A(M,∼) M ∼ A IBD

1M = regular marker panel used for selection (and management); D = an
extra marker panel solely used for inbreeding management (if used at all);
∼ = no markers needed for management / selection (∼ for selection implies
random selection). 2Breeding schemes are denoted by G(PEBV ,PF ) where G
denotes the relationship matrix used for inbreeding management (all schemes used
GVR2 for EBV estimation); PE BV denotes the marker panel used for EBV estimation;
and PF denotes the marker panel used for inbreeding management. 3Abbreviations
and calculations of the relationship matrices are explained in the main text.

GVR2(∼,M), where the first symbol in parentheses refers to EBV
estimation and the second to diversity management. The schemes
are summarized in Table 1.

For all schemes the target 1F was set via the parameter K
to 0.005 / generation, so the target effective population size was
100. Therefore the group coancestry of the parents was set in
generation t to Kt = Kt−1 + 0.005 (1− Kt−1), where K0 = 1/2Ḡ
and Ḡ denotes the average relationship of all candidates in
generation 1 (the first generation with GOC selection). Each
scheme was replicated 100 times by generating a new base
population as described above. Simulation errors were reduced
by simulating all alternative breeding schemes on each replicate
of the initial generations, using the same Panels M, Q, N, and D,
and the same effects for the QTLs. Each generation had random
mating among males and females with mating proportions
guided by the optimum contributions c.

GLA and A are mathematically guaranteed to be positive
definite, and GVR1, GVR2, G0.5, and Gi(p) are guaranteed to be
positive semi-definite, i.e., all eigenvalues λi ≥ 0, as they are
the cross-product of SNP genotype matrices (X or Z) with one
eigenvalue of zero due to the centring of the genotypes. For
the semi-definite matrices a small value (α = 0.01) was added
to their leading diagonal to make them invertible, and positive
definite to permit the use of the optimal contribution algorithm
of Meuwissen (1997). In contrast, GROH is not guaranteed
to be semi-positive definite since its elements are calculated
one by one, and large negative eigenvalues for GROH were
observed empirically (results not shown). When using a general
matrix inversion routine the achieved 1F were much larger
than 0.005/generation. Hence, GROH was made positive definite
by adding substantial values of α to its diagonals, chosen by
trial and error. Starting from an initial value of α = 0.05,
positive definiteness was tested by inversion using Cholesky

FIGURE 1 | Histogram of the minor allele frequencies (MAF) of the SNPs in
the whole genome sequence of the founder population (t = 0) observed in the
simulations following 4000 generations of mutation and random selection.

decomposition, and if it failed then α was doubled if α < 1 or
increased by 1 otherwise, until inversion was successful.

RESULTS

SNPs
The distribution of MAF for the SNPs in the WGS of the
founder population (t = 0) observed in the simulations is depicted
in Figure 1. The four SNP panels, i.e., M, the SNP-BLUP
panel, N, the neutral marker panel, Q, the QTL panel, and D,
a second marker panel for genetic diversity management, are
random samples from the SNPs depicted in Figure 1. The MAF
distribution is typical for that of whole genome sequence data
with very many SNPs with rare alleles and relatively few SNPs
with intermediate allele frequencies.

Equivalence of Fdrift and Fhom
Table 2 shows for the alternative breeding schemes the drift-
and homozygosity-based rates of inbreeding, together with the
deviations Fhom–Fdrift in generation 20. For classical inbreeding
theory the expectation is that Fhom = Fdrift = 0.095 for random
mating. However, with two sexes there will be deviations which
depend on the number of mating parents which are shown in
Figure 2 and were approximately equally divided between males
and females each generation. This has an impact in decreasing
Fhom at generation 20 below random mating expectations by
approximately 1/(2T) where T is the total number of parents
following Robertson (1965). Therefore at generation 20, there
is a classical expectation for Fdrift to exceed Fhom by ∼0.001
for schemes GROH(M,M) and A(M,∼), through ∼0.005 for
GLA(M,M) to∼0.01 for GVR2(M,M).
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TABLE 2 | Rates of increase of homozygosity (1Fhom), drift (1Fdrift), and the deviation Fhom–Fdrift in generation 20 for different types of diversity measures
for Panels M and N.

Scheme1 GBLUP loci (Panel M) Neutral loci (Panel N)

1FHOM
2 1Fdrift

2 Fhom–Fdrift
3 1FHOM

2 1Fdrift
2 Fhom–Fdrift

3

Drift measures

GVR2(M,M) 0.0146 0.005 0.147 0.0103 0.0068 0.054

GVR2(M,D) 0.01 0.0069 0.048 0.0101 0.0068 0.05

GVR2(˜,M) 0.0109 0.005 0.093 0.0085 0.0059 0.041

GVR1(M,M) 0.0096 0.0056 0.063 0.008 0.0069 0.021

Gi(p)(M,M) 0.0051 0.0071 −0.053 0.0065 0.0077 −0.031

Homozygosity measures

G0.5(M,M) 0.0008 0.0213 −0.348 0.0073 0.0176 −0.17

GROH(M,M) 0.0042 0.0091 −0.102 0.0054 0.0088 −0.07

IBD measures

GLA(M,M) 0.0044 0.0049 −0.009 0.0043 0.0049 −0.01

A(M,˜) 0.0072 0.0083 −0.016 0.007 0.0084 −0.021

The target rate of inbreeding for the management of genetic variation was 0.005, and results weigh loci equally irrespective of initial frequency. 1See Table 1
for scheme names. 2Standard errors <2.5 × 10−5. 3Standard errors <2.2 × 10−4.

The deviations of Fhom–Fdrift from 0 were significant for all
the schemes, for both the SNP-BLUP Panel M and the neutral
Panel N, and would imply significant deviations from the classical
Eq. (2). The deviation Fhom–Fdrift for GLA(M,M) was closest to
the classical expectation, and was closer still after accounting
for the degree of non-random mating that was present. Among
the remaining schemes A(M,∼) most closely aligns to classical
expectations. The results based on ROH which attempts to
mimic IBD appears more similar to G0.5(M,M) which manages
homozygosity, where Fdrift exceeds Fhom, although the deviations
of the G0.5(M,M) scheme are much larger, with Fhom − Fdrift =

−0.347 for Panel M which is more than a third of the maximum
inbreeding coefficient of 1.

GVR2(M,M), i.e., a commonly used GOC scheme, showed
a large deviation opposite to that for G0.5(M,M) with Fhom −

Fdrift = 0.147 for Panel M, and 0.053 for Panel N, an excess of loss
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FIGURE 2 | The total number of selected parents for each generation for
different breeding schemes. The total is the number of animals with optimal
contributions >0 required to achieve a fractional increase in the OC constraint
of 0.005.

of heterozygosity relative to drift. Supplementary Information
1 shows this discrepancy must arise due to a covariance
between the direction of allele frequency change and initial
frequency, with a stronger drift to extremes than would be
expected in classical theory. Figure 3 illustrates this covariance
for a randomly chosen replicate, and shows the regression line
(P < 0.001); for this replicate the difference Fhom − Fdrift = 0.055
in Panel N, which arose from a correlation of only 0.040.
For GVR1(M,M), which compared to GVR2(M,M) weights the
Panel M loci proportional to 2p0,k(1− p0,k), this covariance was
weaker but was still observed. The result for GVR2(M,D) showed
that if the panel used for managing diversity (D) is distinct from
that used for SNP-BLUP (M), the covariance in Panel M became
similar to that for Panel N, as it is no longer directly managed
for its diversity, and the outcome for the unmanaged neutral
Panel N was almost identical to GVR2(M,M). The hypothesis that
the covariance arises solely as a property of the management by
GVR2, rather than as a consequence of the directional selection,
was confirmed by the results for GVR2(∼,M) where Fhom still
exceeded Fdrift. Managing the intensity in scheme Gi(p)(M,M) did
not remove the covariance but, in contrast to the other “drift”
schemes, reversed its sign so that Fdrift exceeded Fhom, which is in
accord with the hypothesis that it introduces an increased “cost”
of moving toward the extremes compared to GVR2(M,M).

Managing the Rates of Inbreeding
Table 2 shows 1Fdrift and 1Fhom for the different schemes for
Panels M and N, and Figure 4 shows Fdrift and Fhom over time.
Figure 4 shows that log(1-Fdrift) is approximately linear with
generation for all schemes, in contrast to log(1-Fhom) where some
schemes, e.g., GROH(M,M) show marked curvilinearity.

For GVR2(M,M), 1Fdrift for Panel M was directly controlled
and was on target at 0.005, but 1Fhom was more than double
this target, due to the covariance described above. For Panel N,
1Fdrift was greater and 1Fhom was less than observed for Panel
M, so the difference was less extreme. The increase in 1Fdrift
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FIGURE 3 | The covariance between the standardized change in allele frequency at t = 20 and the standardize frequency at t = 0 for the 7000 SNP loci in Panel N
for a randomly chosen replicate. Standardization is by

√
p0,k (1− p0,k) for locus k. The solid black line is the fitted linear regression y = 0.0083 + 0.0070×, with SES

0.0042 and 0.0021, respectively, and a Pearson correlation r = 0.040. For this replicate Fdrift = 0.123, Fhom = 0.178, and twice the covariance was 0.0555. The
upper x-axis shows the untransformed frequency.

was due to Panel N’s LD with QTL that was not accounted for
by its LD with Panel M, while the decrease in 1Fhomwas due to
the allele frequencies for loci in Panel N being subject to weaker
regulation due to their imperfect LD with those in Panel M.
The same pattern of differences between 1Fdrift and 1Fhomwas
observed in a less extreme form with GVR2(∼,M) as here the
imperfect LD between Panels M and N is still important but
the more favored marker alleles in Panel M change randomly
from generation to generation. The outcome for 1Fdrift shown
in Table 2 for GVR1(M,M) for Panel M is greater than the target,
as Fdrift and Fhom weight all loci in a panel equally, whereas the
management weights the drift by 2p0,k(1− p0,k), consequently
the LD with QTL is more weakly constrained for loci with low
MAF in Panel M, which is where the impact of the covariance is
greatest (Figure 3). This also explains the lower 1Fhom observed
for GVR1(M,M). The results for Gi(p)(M,M) shown in Table 2
reflect the changed sign in the covariance in that 1Fhom was less
than 1Fdrift. Unlike GVR2(M,M), the constraint applied was only
indirectly related to Fdrift or Fhom and so the achieved rates were
not expected to meet the target, although 1Fhom was close to the
target for Panel M.

As with Gi(p)(M,M) the simulated management for the
measures based on homozygosity, G0.5(M,M) and GROH(M,M),
did not explicitly control Fdrift or Fhom, However, 1Fhom was
close to the desired target for GROH(M,M) when measured in
both Panels M and N. GROH(M,M) showed a curvilinear time
trend for Fhom mainly due to a negative 1Fhom during the

first few generations, after which it increased with time and
was rising faster than GLA(M,M) at the end of the period;
in contrast 1Fdrift was approximately linear. The accelerating
1Fhom maybe caused by ROHs failing to accumulate inbreeding
as haplotypes recombine, so reducing the length of IBD segments
below the thresholds implicit in ROH methods, while this older
inbreeding is captured by Fhom. To test this, the minimum
length of a contributing ROH was halved to ∼3.5 from ∼7 Mb
but results were nearly identical to those shown in Table 3
(result not shown). G0.5(M,M) has the highest Fdrift, because
it explicitly promotes allele frequency changes to intermediate
frequencies for all loci.

In contrast to all other schemes, 1Fdrift for GLA(M,M) was
within 2% of the target for both Panels M and N (see Table 2)
but was below target for 1Fhom for both panels. The discrepancy
for 1Fhom is complicated by the dynamic pattern of the number
of parents selected in this scheme (see Figure 2), which results
in the expected heterozygosity being close to that for random
mating in early generations, but ∼0.005 less than random
mating in later generation as a result of the degree of non-
random mating introduced by the smaller number of parents.
Therefore estimating 1Fhom from observed heterozygosity will
underestimate the true value and explains a substantial part of
the observed deviation from the target value of 0.005. Figure 4
shows GLA(M,M) was lowest for Fdrift and Fhom in generation 20
with near constant rates. The results from AOC were qualitatively
similar except that both 1Fhom and 1Fdrift exceeded the target
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FIGURE 4 | Changes in inbreeding coefficients Fdrift and Fhom for the neutral
loci of Panel N over time plotted on a logarithmic scale where a constant rate
of inbreeding results in a linear increase of over time: (A) natural logarithm of
(1–Fhom); and (B) natural logarithm of (1–Fdrift).

rates by 40% in both panels. This is due to the hitch-hiking of
neutral loci with the changes in QTL frequencies arising from
the LD generated within families and is unaccounted by using
expectations of IBD based on pedigree.

TABLE 3 | Genetic gain (and its SE) after 20 generations of selection expressed in
initial genetic standard deviation units, and inbreeding measured by homozygosity
for Panel N of neutral loci at generation 20 for comparison.

Scheme Gain SE Fhom
1 Fdrift

1

Drift measures

GVR2(M,M) 7.124 0.002 0.18 0.12

GVR2(M,D) 7.107 0.003 0.17 0.12

GVR1(M,M) 6.680 0.002 0.15 0.12

Gi(p)(M,M) 7.111 0.003 0.11 0.14

Homozygosity measures

G0.5(M,M) 6.734 0.004 0.13 0.30

GROH(M,M) 9.099 0.003 0.08 0.15

IBD measures

GLA(M,M) 7.188 0.002 0.08 0.09

A(M,∼) 9.890 0.003 0.12 0.14

Scheme GVR2(_,M) is not shown as it was random selection. 1Standard errors
<3 × 10−3.

Genetic Gain
Table 3 shows the genetic gains of the schemes achieved after 20
generations of selection and Figure 5 shows the gain achieved
over time as a function of Fdrift and Fhom for the neutral markers
in Panel N. Figure 5 allows comparisons to be made at the same
Fdrift or Fhom and offsets, in part, the unequal rates of inbreeding
observed among the different schemes.

The genetic gains were very similar (within 0.3%) for
the schemes GVR2(M,M) and GVR2(M,D) where the latter
differs only in using a second marker panel for inbreeding
management which was unambiguously neutral. Given the small
difference in their inbreeding rate at the neutral loci in Panel
N (Tables 2, 3), this indicates that separate panels of markers
for gain and for diversity is unnecessary for such schemes.
The GLA(M,M) scheme yielded significantly more genetic gain
than GVR2(M,M), at lower Fdrift and Fhom. GROH(M,M) and
A(M,∼) yielded substantially more gain, but their Fdrift was
also higher. The A(M,∼) scheme yielded the highest genetic
gain of all the schemes compared, but, compared to its closest
competitors, GLA(M,M) and GROH(M,M), it also yielded more
Fdrift and/or Fhom.

It is clear from Figure 5 that the ranking of the schemes for
achieved gain differs according to whether drift or homozygosity
is considered: e.g., GROH(M,M) and Gi(p)(M,M) schemes yielded
relatively high gains given Fhom, but relatively low gains given
Fdrift, whereas GVR2(M,M) schemes yielded opposite results with
low gains for Fhom and relatively high for Fdrift. The gain for
the GROH(M,M) scheme in early generations was accompanied
by negative Fhom (Figure 5A). GLA(M,M) and A(M,∼) schemes
performed relatively well as shown in both plots of Figure 5,
with GLA(M,M) schemes seeming to yield in both plots slightly
more gain per unit of inbreeding than A(M,∼). Although, the
A(M,∼) gain is high relative to its inbreeding, the inbreeding
rates were substantially larger than the target rate (which can be
seen from Figure 5 by the curves extending far beyond the target).
The GLA(M,M) scheme achieves the target rate of inbreeding
closely for 1Fhom and 1Fdrift (Table 2), and simultaneously
converts inbreeding efficiently into genetic gain. Moreover, when
testing genetic gains in generation 20 of the GLA(M,M) schemes
to interpolated gains at the same overall inbreeding (average of
Fhom and Fdrift) of the A(M,∼) and GROH(M,M) schemes, the
GLA(M,M) scheme yielded the highest gain in 65, respectively,
62 out of 100 replicates; i.e., generation 20 gains of GLA(M,M)
were significantly higher than those of A(M,∼) and GROH(M,M)
(P < 0.01) at the same averaged inbreeding level.

Number of Parents
Figure 2 shows the number of selected parents across the
generations and shows that the schemes that use IBD based
relationship matrices (A, GLA) and GROH select most parents.
The selected number of parents for GROH(M,M) may be
artificially large due to the additions to the leading diagonal of
GROH (on average 8.7) to make it positive definite. This process
made the GROH matrix diagonally dominant, and so reducing
c’GROHc is driven by selecting more parents in order to reduce
the impact of these diagonal elements and not about avoiding the
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FIGURE 5 | Genetic gain, Gt plotted against inbreeding for generations 1–20, where inbreeding is transformed to a logarithmic scale by –log(1-Ft ) for Fhom (A) or
Fdrift (B). For 1F = 0.005, the target after 20 generations is shown (–log(1-F t ) = 0.1).

selection of related animals. Non-positive definite GROH matrices
could be inverted to obtain optimal solutions c, but these yielded
much too high rates of inbreeding (result not shown) probably
because optimal contributions c were found that resulted in
negative c’GROHc, which does not make sense and inbreeding
was high and positive. Schemes using matrices constructed by
the methodology of VanRaden (2008) (GVR1, GVR2, Gi(p), and
G0.5) select fewest parents, implying that they are able to select
relatively less related parents by their respective measure, and
differences in relationships are relatively large in their respective
matrices. Comparing results from Table 2 and Figure 2 suggests

that the selection of relatively few parents is achieved by making
use of the opportunities to induce covariances between allele-
frequency-changes and initial frequencies that these schemes
offer, which in turn affect the frequencies of heterozygotes.

Genetic Variance
Figure 6 shows the genetic variance for the trait calculated
from the true breeding values of the individuals. The G0.5(M,M)
scheme loses substantial genetic variance at an early stage, and
this relatively low genetic variance is maintained throughout
the 20 generations of selection. Therefore striving for allele
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FIGURE 6 | The trait genetic variance of the individuals plotted over time.

frequencies of 0.5 at the loci in Panel M does not maintain
variation at the QTL in Panel Q, which is in accord with the
results for Panel N in Table 2. The relatively low variance for
A(M,∼) at generation 20 is a consequence of it relatively high
genetic gain combined with its relative high rates of inbreeding.
By generation 20, the GLA(M,M) scheme has lost least genetic
variance, due to its rates of inbreeding not exceeding the target,
and may explain why the GLA(M,M) scheme is very efficient
in turning inbreeding into gain at the end of the selection
period (Figure 5).

DISCUSSION

Equivalence of Measures Fhom and Fdrift
In the classical work of Wright (1922) two natural measures
of inbreeding were introduced concerned with the extent of
drift on the one hand (here represented by Fdrift and 1Fdrift)
and heterozygosity on the other (here represented by Fhom
and 1Fhom), and in classical theory with neutral loci unlinked
to QTL these perspectives were identical and directly linked
to the occurrence of IBD. The results of this study show
that these measures of inbreeding can differ substantially
in genomic optimum contribution schemes even when there
are no QTL in the genome [GVR2(∼,M); Table 2]. This is
because the management in these schemes is commonly directed
at the observed homozygosity or drift of the marker loci
being monitored. For example, schemes that limit the rate
of increase of homozygosity (as represented here by G0.5)
induce a negative covariance between the change in allele
frequency and the initial frequency, as an excess of minor alleles
compared to classical expectations move toward intermediate
levels. Conversely schemes managing drift and limiting changes
in allele frequency (e.g., using GVR2) induce a positive covariance
between change in allele frequency and the initial frequency,
as an excess of minor alleles tend to move toward the nearest
extreme. Consequently, systematic discrepancies occur between
1Fdrift and 1Fhom. These discrepancies are a property of the
inbreeding management and not of selection per se, as they were
unaffected by whether random GEBVs were used in the scheme

or separate panels of SNPs were used for generating GEBV and
management of inbreeding. In contrast to the management using
the IBS allele frequencies of monitored markers, when IBD was
used either via genomics information (GLA) or approximately
(A, uninfluenced by markers) the equivalence of 1Fdrift and
1Fhomwas re-established in the simulations, although not with
GROH which is targeted toward IBD but is based on the
homozygosity of haplotypes.

The origin of these covariances between allele frequency
changes and initial frequencies can be seen when considering
the form of the relationship matrix and is explored in detail in
Supplementary Information 1. The negative covariance arising
from G0.5 explicitly measures allele frequencies as deviations
from 0.5, not from the base frequency p0,k and consequently gains
in this measure of diversity (but not necessarily IBD, as discussed
later) are obtained by moving frequencies toward 0.5 offsetting
any opposing changes prompted by selection objectives. The
positive covariance, for example with GVR2, arises because drift
of an allele to the more distant extreme is more heavily penalized
compared to completely random drift as the GOC with GVR2
is constraining the square of the change. This will inevitably
promote shifts to the nearest extreme, and more strongly so
as p0 deviates more from 1/2. Since GVR1 is a re-weighting
of the loci in GVR2 by wk/6loci kwk for locus k, where wk =

2p0,k(1− p0,k), placing more weight on frequency changes for
loci initially closer to 1/2, it would be expected the discrepancy
between Fdrift and Fhomwould be less for GVR1 than GVR2 as
observed in the simulations (see Table 2 and Figure 4). Moving to
management using the total intensity applied over time

(
Gi(p)

)
penalizes deviations that move toward the extremes more heavily
than those toward intermediate frequencies (as di/dp = [p(1−
p)]−1/2; Liu and Woolliams, 2010), and this changed the sign of
the discrepancy although its magnitude was decreased compared
to GVR2.

GVR2, which was used by Sonesson et al. (2012), controlled
1Fdriftand met the target for the panel used (see Table 2) but
1Fhom was much greater due to the covariance discussed above.
This agreed with the findings of de Beukelaer et al. (2017),
where it was suggested that the covariance between change
in frequency and its initial value could be the cause of this.
However, these authors also reset the allele frequencies for the
reference population in the GVR1 matrix every generation to
the current generation frequencies, which implies that changes
in allele frequency in each generation are constrained without
reference to their accumulated change over earlier generations.
In a continuous selection scheme, the allele frequency changes
of successive generations are positively correlated; thus, although
the variance of the change in allele frequency within a generation
may have been on target, the variance of the cumulative allele
frequency change over generations will exceed the target value
due to these positive correlations, as observed in their study. This
distinction in methodology will have affected all findings on GOC
in the study of de Beukelaer et al. (2017).

Sonesson et al. (2012) found that GVR2 schemes achieved
their target rate of inbreeding based on IBD using loci
with 2N alleles scattered across the genome. Details of the
founder populations used in their study were presented in

Frontiers in Genetics | www.frontiersin.org 12 August 2020 | Volume 11 | Article 880

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00880 August 11, 2020 Time: 19:11 # 13

Meuwissen et al. Genomic Management of Genetic Diversity

Sonesson and Meuwissen (2009), which revealed that their SNP-
BLUP marker panel was selected for intermediate frequencies
in order to mimic a typical SNP-chip marker panel. This is
very different from the SNP-BLUP panel used here which was
a random sample of whole genome sequence data, and hence
dominated by extreme allele frequencies (Figure 1). The strength
of the covariance underlying the discrepancy between Fdrift
and Fhom depends on the distribution of (p0 −

1
2 ), and so in

Sonesson et al. (2012) any discrepancy would have been much
reduced. In the context of the current results, it was most similar
to using GVR1 where the intermediate loci are more heavily
weighted. Conclusions from these considerations are (i) that
the discrepancies between the different measures of rates of
inbreeding are extreme in WGS data, due to their extreme allele
frequencies (Figure 1); and (ii) the discrepancies are a property
of the panel used to manage diversity and not the remaining
loci, as the IBD-alleles used by Sonesson et al. (2012) have low
MAF by construction. Hence, for typical SNPs from chips, the
discrepancies between Fdrift and Fhom are expected to be present
but smaller than those in Table 2.

Management of Diversity
An important aspect of a tool to manage diversity is that it is
predictable in meeting its targets, and this can be examined for
the marker panel, for the unmanaged neutral markers, and for
Fdrift and Fhom. In this respect, GVRn meets the target but only
for Fdrift and only in the marker panel (i.e., not in the unmanaged
panel) whereas GLA meets the target (with only minor deviations)
for both Fdrift and Fhom for both panels. All others failed to meet
the target rate to a greater or lesser degree and would need to be
calibrated, possibly in every generation, to meet the targets set at
neutral loci. In practice, this would require as realistic as possible
simulations of the practical breeding scheme using the current
situation as a starting point.

A key management objective in breeding schemes is the
efficient generation of gain from the genetic variance in the
objectives, and conserving the variation at the (currently) neutral
loci, and here the IBD-related schemes were best when compared
to Fdrift or Fhom of neutral loci. On an average of Fdrift and Fhom,
GLA was more efficient than GROH, which gave different rates
for 1Fhom and 1Fdrift, would require regular calibration, and
(in the current implementation following de Cara et al., 2013)
always required very large number of parents, which in practice
would usually demand additional scheme resources. Henryon
et al. (2019) observed that using A appeared to be more efficient
than using GVR2, and this was confirmed here. The differences
between schemes using GLA and A were small when plotted
against Fdrift or Fhom but the GLA scheme was the only scheme
tested here that combined high efficiency with rates of inbreeding
close to and not exceeding the target rate of inbreeding of 0.005.
This supports the conclusion of Sonesson et al. (2012) that
genomic selection requires genomic control.

One consequence of entering the genomics era is that the
meaning of diversity and its management in practice is more
open to discussion, as the pedigree is no longer the only tool to
measure and manage it. For example, the number of polymorphic
loci could be used as a measure, which might underpin major

concerns over the disappearance of known rare alleles in the
scheme. Further, in the pedigree inbreeding framework, the
measure used is the fraction of variance that is expected to have
been lost from the reference base. In the genomic era, if the
measure is simply defined as the genetic variance defined by IBS
and maximized, there is scope for increasing diversity by the
directional selection of loci toward intermediate frequencies as
an objective. These measures have been explored elsewhere (see
Howard et al., 2017 for a review). In general, attaching values
(e.g., selection index weights) to genetic diversity is a very difficult
task (e.g., Brisbane and Gibson, 1994; Wray and Goddard, 1994;
Goddard, 2009; Jannink, 2010; Howard et al., 2017), which
becomes especially clear in view of the aforementioned goals
of diversity management, where diversity is required at many
(hypothetical) traits simultaneously. Breeders have generally
more of an idea about their target rate of inbreeding than on what
weight to give to a diversity measure. Although the actual choice
of the target rate of inbreeding remains somewhat arbitrary,
guidelines have been developed over the years (Woolliams et al.,
2015, for a review).

Here, it is argued that an over-riding objective for many
populations such as livestock or zoo populations, beyond the
breeding goals that underlie the selection on the EBV, is to
manage over time the risks associated with the unmeasured
attributes of a reference population (e.g., unrecognized
deleterious recessives, drift in desirable holistic qualities,
epistatic variance). In this respect, all approaches used in this
study refer back directly to the established reference (base)
population. As mentioned above, other perspectives may be
advanced such as increasing the genetic variance at neutral loci
by increasing heterozygosity (e.g., de Beukelaer et al., 2017). This
could be achieved by the promotion of allele frequency changes
toward intermediate values, as exemplified by G0.5 in this study,
however, this raises issues that require further consideration.
Firstly, changes in allele frequency result from multiple copies
of a subset of base generation alleles, so increasing frequency is
promoting IBD based inbreeding (it is analogous to changing
QTL frequency). Secondly, if carried out with a marker panel,
then increasing heterozygosity of the marker loci does not
necessarily increase heterozygosity among unmonitored neutral
loci, which is the objective. In these simulations, the near
avoidance of overall loss of heterozygosity in the marker panel
by GOC0.5 during selection was accompanied by much greater
drift and more loss of heterozygosity in the unmonitored
neutral loci than was achieved using IBD based inbreeding
management. In contrast, the use of IBD in GLA has information
on the unobserved heterozygosity and drift across all the
unmonitored genome positions. It remains only a hypothesis
that the management of heterozygosity and drift using IBS might
perform better than IBD when WGS sequence data is available,
with or without selection, although some studies have considered
its use (Eynard et al., 2015, 2016; Gómez-Romano et al., 2016).
The question how to weigh Fhom and Fdrift across all loci in
the genome when a key objective is to manage unknown or
unmonitored risks remains open.

While this study has focused on schemes where loss of
genetic diversity is managed next to the maximization of genetic
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gain, other schemes may be pure conservation schemes, where
no genetic change (gain) is desired, but the goals for genetic
management are the same; i.e., conserve genetic variation,
avoid inbreeding depression, avoid the occurrence of recessive
diseases, and avoid random changes in phenotypic traits related
to drift from a valued reference population. Strictly, with pure
random selection, drift and homozygosity based inbreeding are
expected to be the same [Eq. (2); and Falconer and Mackay,
1996]. However, minimisation of allele frequency changes or
minimisation of loss of heterozygosity based on using IBS may
still result in discrepancies between drift and homozygosity based
inbreeding measures arising from the covariances described
above. In fact, the potential covariance between the change in
allele frequency and the initial frequency is expected to increase,
since the inbreeding management term is more important in pure
conservation schemes. This would also hold for GOC schemes
with selection that aim for an Ne higher than our goal of Ne = 100.
The greater potential for discrepancy argues for the use of IBD-
based measures of relationship (GLA, or a more conservative use
of A) to maintain diversity in such genetic conservation schemes.

The approach adopted here has not favored genetic variation
at some neutral loci more than others a priori. Of course, a
weighted genomic relationship matrix could be implemented
and/or the multiple relationship matrices and associated
constraints could be used to simultaneously control the genomic
variation in different types of loci (Dagnachew and Meuwissen,
2016; Gómez-Romano et al., 2016). For example, a general G
matrix covering the entire genome, and an additional G matrix
controlling genetic diversity at e.g., the major histocompatibility
complex, which is essential to the immune response of the
animals. Alternatively, regions of the genome may be sought
where average heterozygosity is to be increased (reduced) under
the assumption that diversity is especially (or not) important
in these regions. Regions with known recessive defects may be
prioritized for diversity management, but direct inclusion of
the known defects in the breeding goal seems more effective
in controlling their frequencies. In practice, such regions with
special emphasis for diversity management would need to be
known a priori, and may only be effective if WGS was used
for the relationships because, as shown here, what happens in
a sample of loci does not necessarily predict what happens at
loci outside that subset. Causative alleles of quantitative traits
are quite evenly distributed across the genome (Wood et al.,
2014), and as argued here the main goals of diversity management
address many anonymous, unknown loci and hypothetical traits
simultaneously, which makes it very hard to achieve a worthwhile
prioritization of genomic regions for diversity management.

CONCLUSION

• Contrary to classic inbreeding theory, inbreeding of
unmanaged neutral loci as measured by drift (Fdrift) and
by homozygosity (Fhom) can differ very substantially, due
to a covariance between the change in allele frequency and
its initial frequency, leading to non-zero expected changes
in frequency of a sign and magnitude determined by the

initial frequency. Discrepancy between Fdrift and Fhom
occurs when inbreeding management is based on genomic
relationship matrices (or similarity matrices) derived using
IBS, but not when derived using IBD, which acts as a
unifying concept for Fdrift and Fhom.
• The covariance generated is expected to be larger for

WGS data where allele frequencies are extreme with typical
MAF close to 0, than for SNP (chip) panels where allele
frequencies are generally closer to 1/2.
• The (genomic) selection component of OC schemes does

not cause the difference between Fdrift and Fhom.
• Using the same or a different panel for estimating GEBVs

than for management of diversity in OC schemes makes
only very small differences to genetic gain and the
inbreeding in unmonitored neutral loci.
• Measures of genomic relationship can be classified as those

based on changes in allele frequency change (e.g., GVR2)
and directed at Fdrift; those based on homozygosity (e.g.,
G0.5) and directed at Fhom; and IBD based (e.g., GLA);
or combinations of these (e.g., GROH). The choice of the
relationship matrix depends very much on what objective
it should serve.
• OC schemes that limit Fdrift directly limit allele frequency

changes, such as those using GVR2, result in low 1Fdrift at
the expense of high 1Fhom. Schemes using GVR1 will be less
extreme in this than GVR2.
• OC schemes that limit 1Fhom (e.g., using G0.5),

result in very low 1Fhom at the expense of high
1Fdrift but both Fhom and Fdrift may exceed targets at
unmonitored neutral loci.
• The OC scheme using GLA, an IBD based relationship

matrix, was the only scheme investigated here that managed
homozygosity and drift based inbreeding within the target
rate of 0.5%, yielding an effective population size ∼100;
for all other schemes, either 1Fdrift or 1Fhom or both
exceeded their target.
• The OC scheme using GLA yielded the highest gain per unit

of inbreeding across both measures of inbreeding, closely
followed by the scheme using A. The latter yielded high gain
per unit of F but grossly exceeds target rates of inbreeding.
• The use of GLA in practice requires the development of fast

algorithms for its calculation.
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