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ABSTRACT

In dairy cattle, selecting for lower methane-emitting 
animals is one of the new challenges of this decade. 
However, genetic selection requires a large number of 
animals with records to get accurate estimated breed-
ing values (EBV). Given that CH4 records are scarce, 
the use of information on routinely recorded and highly 
correlated traits with CH4 has been suggested to in-
crease the accuracy of genomic EBV (GEBV) through 
multitrait (genomic) prediction. Therefore, the objec-
tive of this study was to evaluate accuracies of predic-
tion of GEBV for CH4 by including or omitting CH4, 
energy-corrected milk (ECM), and body weight (BW) 
as well as genotypic information in multitrait analy-
ses across 2 methods: BLUP and single-step genomic 
BLUP (SSGBLUP). A total of 2,725 cows with CH4 
concentration in breath (14,125 records), BW (61,667 
records), and ECM (61,610 records) were included in 
the analyses. Approximately 2,000 of these cows were 
genotyped or imputed to 50K. Ten cross-validation 
groups were formed by randomly grouping paternal 
half-sibs. Five scenarios were performed: (1) base sce-
nario with only CH4 information; (2) without CH4, but 
with information from BW, ECM, or BW+ECM only 
in reference population; (3) without CH4, but with 
information from BW, ECM, or BW+ECM in both 
validation and reference population; (4) with CH4 in-
formation and BW, ECM, or BW+ECM information 
only in the reference population; and (5) with CH4 in-
formation and BW, ECM, or BW+ECM information in 
both validation and reference population. As a result, 
for each method (BLUP, SSGBLUP), 13 sub-scenarios 
were performed, 1 from scenario 1, and 3 for each of the 
subsequent 4 scenarios. The average accuracy of GEBV 
for CH4 in the base scenario was 0.32 for BLUP and 
0.42 for SSGBLUP, and it ranged from 0.10 in scenario 
2 to 0.78 in scenario 5 across methods. In terms of bias, 
the base scenario 1 was unbiased for SSGBLUP; similar 

results were achieved with scenario 5. Including infor-
mation on ECM increased the accuracy of GEBV for 
CH4 by up to 61%, whereas adding information on both 
traits (BW and ECM) increased the accuracy by up to 
90%. Scenarios that did not include CH4 in the refer-
ence population had the lowest correlations (0.17–0.33) 
with single-trait CH4 GEBV, and scenarios with CH4 
in the reference population had the highest correla-
tions (0.41–0.81). Thus, failure to include CH4 in future 
reference populations results in predicted CH4 GEBV, 
which cannot be used in practical selection. Therefore, 
recording CH4 in more animals remains a priority. Fi-
nally, multiple-trait genomic prediction using routinely 
recorded BW and ECM leads to higher prediction accu-
racies than traditional single-trait genomic prediction 
for CH4 and is a viable solution for increasing the accu-
racies of GEBV for scarcely recorded CH4 in practice.
Key words: multitrait genomic prediction, predictor 
trait, methane concentration

INTRODUCTION

Methane emission of dairy cattle represents 18% 
of the global greenhouse gas emissions (Knapp et 
al., 2014). This has led to a large number of research 
projects investigating opportunities to reduce methane 
emissions in dairy cattle (de Haas et al., 2011; Waghorn 
and Hegarty, 2011; Garnsworthy et al., 2012; Ross et 
al., 2013). From the genetic point of view, methane 
emission has shown to be a heritable trait (0.100.30; 
van Engelen et al., 2015; Lassen and Løvendahl, 2016; 
Pszczola et al., 2017; Breider et al., 2018; Difford et 
al., 2020), making it possible to select for lower emit-
ting animals, with the advantage that genetic progress 
is cumulative and permanent. However, as CH4 is a 
scarcely recorded trait, it would require a considerable 
number of cows with CH4 records in the reference popu-
lation to estimate genetic EBV (GEBV) of bulls with 
good accuracies (Hayes et al., 2009). At present, the 
accuracies of GEBV are low due to the limited number 
of cows with CH4 records. One approach to increase 
the accuracy of prediction of GEBV for CH4 given 
the limited amount of data available could be to in-
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clude information on routinely recorded traits that are 
highly genetically correlated with CH4 in a multitrait 
genomic prediction. Before the genomic era, Ducrocq 
(1994) stated the benefits from multitrait prediction 
in 3 points: (1) the exploitation of indirect information 
provided by correlated traits that is not available in 
selection candidates, (2) the use of additional knowl-
edge that can increase the accuracy of the genetic 
evaluations, and (3) the reduction of systematic biases 
in the evaluations. Likewise, Ducrocq (1994) reported 
increases in genetic gain when the genetic correlation 
between traits is high when (1) the difference between 
the genetic and the residual correlation is large; (2) the 
difference in heritability is large, and the goal trait is 
the one with lowest heritability; and (3) more than one 
random effect is considered, and the full- or half-sib 
family size is small. More recently, it has been sug-
gested that multiple-trait genomic selection could lead 
to higher prediction accuracy than single-trait genomic 
selection (Calus and Veerkamp, 2011; Jia and Jannink, 
2012), where the magnitude of genetic correlations 
between the traits is the key factor determining the in-
crease in accuracy. Within this context, BW and ECM, 
traits that are routinely recorded in some automated 
milking robots and highly correlated with CH4, could 
be good candidate predictor traits for CH4.

To determine the benefit of including genotypic in-
formation in the prediction of the EBV and the consis-
tency of the predictor traits across methods, 2 methods 
were tested. First, BLUP used pedigree-derived addi-
tive genetic relationships to estimate an EBV for each 
animal in the pedigree. Second, single-step genomic 
BLUP (SSGBLUP; Aguilar et al., 2010; Christensen 
and Lund, 2010) allowed the addition of phenotypic 
information of non-genotyped animals into the genomic 
BLUP method by combining in a single step the ge-
nomic relationship matrix (GRM) with the pedigree 
relationship matrix into a new relationship matrix, 
whose inverse is used to solve the mixed-model equa-
tions to obtain the GEBV. Therefore, the objective of 
this study is to evaluate the accuracy of prediction and 
bias of GEBV for CH4 by testing a variety of scenarios 
with the presence or absence of predictor traits (ECM 
and BW) and genotypes.

MATERIALS AND METHODS

Phenotypes

A total of 2,725 Danish Holstein cows with CH4 
breath concentration (referred to as CH4; 14,125 re-
cords), BW (61,667 records), and ECM (61,610 records) 
were available from the Danish Cattle Research Center 
(Foulum, Denmark; 1,328 cows) and 10 commercial 

farms (1,397 cows) in Denmark. The records were col-
lected between 2011 and 2016 as described previously 
in Zetouni et al. (2018) and Difford et al. (2020). Meth-
ane data (from research and commercial herds) were 
filtered to include only weekly averages comprising 4 
or more days of recording for each week of measure-
ment and cows with a minimum of 3 repeated weekly 
measurements. Methane concentration was measured 
by 2 sniffer methods (Garnsworthy et al., 2012; Las-
sen et al., 2012): the nondispersive infrared CH4 sen-
sor (Guardian NG, Edinburgh Instruments Ltd., Liv-
ingston, UK) in the research farms and the portable 
Fourier transform infrared Gasmet DX-4000 (Gasmet 
Technologies Oy, Helsinki, Finland) in the commercial 
farms. The concordance correlation coefficient between 
both sniffers when measuring CH4 concentration was 
0.79 (Garnsworthy et al., 2019). Both methodologies 
were described and compared previously (Difford et al., 
2016), where it was concluded that both instruments 
can be used interchangeably after calibration and stan-
dardization. As CH4 concentration (in parts per million) 
was not normally distributed, a natural logarithm (ln) 
transformation was used, and the ln was multiplied by 
100 to avoid problems with the scale of the other traits. 
The phenotypic correlation between CH4 concentration 
and CH4 in grams per day based on a previous study on 
the same data was 0.85, whereas the genetic correlation 
was 0.74 (C. I. V. Manzanilla-Pech, unpublished data). 
However, in this study, only the CH4 concentration 
trait was used to avoid artificially induced covariation 
between traits in multitrait estimators, as estimated 
CH4 in grams per day is a linear combination of the 
ratio CH4:​CO2 concentration and the predictor traits 
ECM and BW (Madsen et al., 2010).

Weekly average records on BW and milk yield 
(MY) were collected between 1992 and 2016. Cows 
were located at Ammitsbøl Skovgaard research herd 
(Skovgaard, Vejle, Denmark) until 2000 and were sub-
sequently relocated to the Danish Cattle Research Cen-
ter in 2001 to 2016 as reported in Li et al. (2017). Cows 
were part of numerous nutritional experiments and 
diets that included primarily rolled barley, corn silage, 
grass clover silage, rapeseed meal, and soybean meal. 
The research barn Ammitsbøl Skovgaard was a tiestall 
system with twice-daily milking and sampling to mea-
sure milk quantity and components (fat and protein 
content). The Danish Cattle Research Center barn is a 
loose housing system with access to automatic milking 
systems (DeLaval International AB, Tumba, Sweden). 
Milk composition was determined using infrared tech-
nology at Eurofins (Vejen, Denmark) using CombiFoss 
equipment (Foss, Hillerød, Denmark). The automatic 
milking system was fitted with a weighing platform 
(Danvaegt, Hinnerup, Denmark) that recorded BW at 
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each milking from which weekly averages were calcu-
lated (full description can be found in Li et al., 2017). 
For the 10 commercial farms, weekly average MY and 
milk components were available by the national record-
ing scheme (RYK, Skejby, Denmark).

Energy-corrected milk was calculated using the fol-
lowing equation (Sjaunja et al., 1990):

	 ECM (kg) = 0.25milk (kg) + 12.2fat (kg) 	  

	 + 7.7protein (kg).	 [1]

Genotypes and Pedigree

Two sets of genotypes were available; one set (1,747 
cows) was genotyped with 50k Illumina Bovine SNP50 
(Illumina, San Diego, CA), and the other set (466 
cows) was genotyped with EuroGenomics 10K LD chip 
(EuroGenomics, Amsterdam, the Netherlands). The 
genotypes were edited for quality control with Plink 
software (Purcell et al., 2007). Quality control included 
a minimum of 0.02 for minor allele frequency, a maxi-
mum of 10% genotypes per SNP missing, a maximum 
of 15% genotypes per animal missing, and Hardy-
Weinberg disequilibrium significant at P = 0.001. In 
addition, animals with duplicated genotypes, sex chro-
mosome SNP, unmapped SNP, and SNP with duplicate 
or uncertain positions were deleted. Posteriorly, the 
LD chip genotypes were imputed to 50K with FIm-
pute software (Sargolzaei et al., 2014). After editing 
and removing duplicates, 1,962 cows with 38,253 SNP 
remained. The full pedigree contained the identification 
of the cow, sire, and dam for around 49,000 individuals. 
After pruning for noninformative animals, 25,701 ani-
mals remained. The cows with phenotypes could trace 
back ancestors on average 9 generations in the pruned 
pedigree.

Variance Components and GEBV Estimation

Variance components for CH4, BW, and ECM were 
estimated using the AI-REML algorithm with DMU 
software (Version 6, Release 5.4; Madsen and Jensen, 
2014). Genetic and phenotypic correlations used for the 
GEBV calculation were estimated through multivariate 
analysis between the traits in the full population using 
pedigree information.

To test the change in accuracies by including geno-
typic information, 2 methods were used: BLUP with 
only pedigree information and SSGBLUP with geno-
types plus pedigree information. The GEBV for CH4 
of each animal (through different scenarios and meth-
ods) were estimated using DMU (Madsen and Jensen, 
2014) with BLUP and SSGBLUP. Both methods were 

implemented considering the same fixed effects and 
nongenetic random effects as in Equation 2. All SNP 
that passed quality control were used to calculate GRM 
according to VanRaden (2008), using the invgmatrix 
program included in DMU (Madsen and Jensen, 2014) 
together with the pedigree.

The BLUP and SSGBLUP in matrix notation with 
variance components estimated in Equation 2 and the 
inverse of relationship matrix A and H, respectively, 
are:

	 y = Xb + Z1a + Z2c + e,	 [2]

where y is the vector of phenotypes; b represents the 
vector of fixed effects [herd, trial, year, season; lacta-
tion week modeled with the Wilmink function; type of 
sniffer (2 levels); and parity number as 1, 2, and 3+]; X 
is the incidence matrix relating observations with fixed 
effects; a is the vector of direct additive genetic effects; 
Z1 is the incidence matrix relating observations with 
random genetic effects; c is the vector of permanent 
environmental effects; Z2 is the incidence matrix relat-
ing observations with random permanent environmen-
tal effect; and e is the vector of residual effects. The 
models for BW and ECM were similar to Equation 2 
but excluding the type of sniffer (Guardian or Gasmet) 
fixed effect. Distributions of the random effects are 
var( ) = a Aσa

2  for the BLUP method using only pedi-
gree, where A is the pedigree relationship matrix and 
σa

2  is the additive genetic variance; var( )a H= σa
2  for 

the SSGBLUP method, where H is the combined pedi-
gree and genomic relationship matrix and σa

2  is the 

additive genomic variance; var( ) ,c I= σc
2  where I is the 

identity matrix of order equal to the number of indi-
viduals with records and σc

2  is the permanent environ-

mental variance; and var( ) ,e I= σe
2  where I is an iden-

tity matrix of an order equal to the number of observa-
tions and σe

2  is the residual variance. The inverse of the 
H-matrix, H−1, was calculated with the following equa-
tion (Aguilar et al., 2010; Christensen and Lund, 2010):

	 H A
G A

− −
− −= + ( )




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	 [3]

where A−1 is the inverse of the pedigree relationship 
matrix; λ is the value of 0.95 for lambda, G−1 is the 
inverse of the GRM, w is the relative weight on the 
polygenic effect, and A22

1−  is the inverse of the pedigree 
relationship matrix among genotyped animals.
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Scenarios and Sub-Scenarios

Table 1 illustrates all the scenarios, sub-scenarios, 
and (co)variances used for each scenario. Thirteen 
sub-scenarios across 5 scenarios were performed, first 
a base single-trait scenario (1, CH4), where only CH4 
information was considered. From scenario 2 to 5, each 
scenario has 3 sub-scenarios depending on the predictor 
trait included: (a) BW, (b) ECM, and (c) BW+ECM. 
Thus, the second scenario assumes the absence of CH4 
information, but with information available on predic-
tor traits in the reference population: (2a) BW_OR, 
(2b) ECM_OR, and (2c) BW+ECM_OR. The third 
scenario assumes the absence of CH4 information, but 
with information available on predictor traits in vali-
dation and reference population [(3a) BW_VR, (3b) 
ECM_VR, (3c) BW+ECM_VR]. The fourth scenario 
assumes the presence of information on CH4 and predic-
tor traits on the reference population [(4a) CH4+BW_

OR, (4b) CH4+ECM_OR, (4c) CH4+BW+ECM_OR]. 
Finally, the fifth scenario assumes the presence of 
information of CH4 in the reference population and 
predictor traits in both validation and reference popu-
lation [(5a) CH4+BW_VR, (5b) CH4+ECM_VR, (5c) 
CH4+BW+ECM_VR].

Cross-Validation Groups

All 13 sub-scenarios across the 2 methods (BLUP 
and SSGBLUP) were validated using cross-validation, 
where the population of genotyped individuals was 
divided into 10 subsets, ensuring all paternal half-sibs 
were in the same group. The assignment to the groups 
was made by sire, using stratified random sampling, 
which was undertaken in 2 steps. First, the sires of 
genotyped animals were ranked from the highest to 
the lowest by number of daughters with CH4 records. 
Then, from every set of 10 subsequent sires, 1 sire was 
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Table 1. Different scenarios and sub-scenarios performed per method (BLUP, SSGBLUP)1

Scenario 
description  

Sub-scenario  
abbreviation2  

Type of  
analysis  

(Co)variances 
used to obtain 
GEBV3  

Validation 
trait  

Information 
included 
in the validation 
population  

Information 
included 
in reference 
population

1. Base 1. CH4 Univariate Var CH4 CH4 — CH4
2. No CH4, 
predictor 
traits only in 
reference

2a. BW Bivariate Var CH4, Var BW, 
Cov CH4-BW

CH4 — BW

2b. ECM Bivariate Var CH4, Var ECM, 
Cov CH4-ECM

ECM

2c. BW + ECM Trivariate Var CH4, Var BW, 
Var ECM, Cov CH4-
BW Cov CH4-ECM, 
Cov BW-ECM

BW and ECM

3. No CH4, 
predictor traits 
on validation 
and reference

3a. BW Bivariate Var CH4, Var BW, 
Cov CH4-BW

CH4 BW BW

3b. ECM Bivariate Var CH4, Var ECM, 
Cov CH4-ECM

ECM ECM

3c. BW + ECM Trivariate Var CH4, Var BW, 
Var ECM, Cov CH4-
BW Cov CH4-ECM, 
Cov BW-ECM

BW and ECM BW and ECM

4. CH4, 
predictor traits 
only reference

4a. CH4 + BW_OR Bivariate Var CH4, Var BW, 
Cov CH4-BW

CH4 — CH4 and BW

4b. CH4 + ECM_OR Bivariate Var CH4, Var ECM, 
Cov CH4-ECM

CH4 and ECM

4c. CH4 + BW + ECM_
OR

Trivariate Var CH4, Var BW, 
Var ECM, Cov CH4-
BW Cov CH4-ECM, 
Cov BW-ECM

CH4, BW, and 
ECM

5. CH4, 
predictor trait 
on validation + 
reference

5a. CH4 + BW_VR Bivariate Var CH4, Var BW, 
Cov CH4-BW

CH4 BW CH4 and BW

5b. CH4 + ECM_VR Bivariate Var CH4, Var ECM, 
Cov CH4-ECM

ECM CH4 and ECM

5c. CH4 + BW + ECM_
VR

Trivariate Var CH4, Var BW, 
Var ECM, Cov CH4-
BW Cov CH4-ECM, 
Cov BW-ECM

BW and ECM CH4, BW, and 
ECM

1SSGBLUP = single-step genomic BLUP.
2CH4 = methane concentration; OR = only reference; VR = validation + reference. 
3GEBV = genomic EBV.
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randomly allocated to 1 of the 10 groups. Thus, the 10 
validation groups were similar in terms of the propor-
tion of sires, number of cows with genotypes and the 
total number of records. The number of sires and cows 
in the cross-validation groups is shown in Table 2. The 
average number of cows per sire was 4, and the total 
number of sires was 566. For each of the validation 
groups, GEBV for CH4 were predicted after excluding 
the respective CH4 phenotypes from the analysis, us-
ing phenotypes of the other 9 groups as the reference 
population.

Accuracy and Bias Calculation

Adjusted phenotypes for CH4 were calculated as the 
sum of the solutions per animal for genetic effects and 
permanent environmental effects with the full data-
base, using all fixed effects in Equation 2. In this way, a 
unique phenotype per animal closer to the true pheno-
type was available instead of multiple true phenotypes. 
The accuracies were calculated via cross-validation per 
sub-scenario as the correlation between the adjusted 
phenotype for CH4 and the GEBV for CH4 divided by 
the formula adapted from Mrode (2013) computed to 
calculate the accuracy for repeated records:

	 Accuracy
h

=

+ −( )

r

n
n t

2

1 1

, 	 [4]

where r is the correlation between the adjusted phe-
notype and the GEBV, n is the average number of 
repeated records per animal per cross-validation group 
(6); h2 is the heritability of the CH4 (0.14 ± 0.05; see 
Results and Discussion); and t is the repeatability of 
CH4 calculated as sum of the genetic and permanent 
environmental variances divided by the phenotypic 
variance (0.51). Accuracies were averaged across the 
10 validation groups. Standard errors of accuracies per 
scenario were defined as the standard deviation of the 

accuracy across all validation groups divided by the 
square root of the number of validation groups (10). 
Slopes of regression (linear regression coefficients) of 
the adjusted phenotypes on the GEBV were calculated 
per method and per sub-scenario as a measure of the 
bias in terms of the variance in GEBV. Addition-
ally, average pairwise comparison correlations between 
GEBV obtained from all 13 scenarios across 10 valida-
tion groups were calculated as additional measure to 
determine the similarities among the scenarios.

RESULTS AND DISCUSSION

Estimated Genetic Parameters

Descriptive statistics for CH4, BW, and ECM are 
presented in Table 3. Energy-corrected milk and BW 
values are consistent with northern European cattle 
(Manzanilla-Pech et al., 2014; Li et al., 2018). Estimat-
ed variances, heritability, repeatability, and phenotypic 
and genetic correlations for CH4, BW, and ECM are 
shown in Table 4. The heritability estimate for CH4 was 
0.14, within the range of estimates from literature (0.10 
to 0.30) from smaller studies (van Engelen et al., 2018, 
Difford et al., 2020). Repeatability for CH4 was 0.51, 
meaning that the permanent environmental variation 
explained a higher proportion of the variance than the 
genetics for this trait. The estimated heritability for 
ECM of 0.37 in the current study was in the range of 
previously reported heritabilities, ranging between 0.27 
and 0.54 (Hüttman et al., 2008; Buttchereit et al., 2011; 
Manzanilla-Pech et al., 2014; Li et al., 2018; Interbull, 
2018). Likewise, estimated heritability for BW (0.58) 
was in the range of estimates in the literature ranging 
from 0.43 to 0.65 (Berry et al., 2003; Muller et al., 
2006; Dechow et al., 2010; Manzanilla-Pech et al., 2014; 
Li et al., 2018). The genetic correlation between CH4 
emissions and BW (0.50) was close to value of 0.42 
reported by Breider et al. (2018) using the SF6 tracer 
gas method for measuring CH4. The genetic correlation 
between CH4 and ECM (0.60) in this study was higher 
than the genetic correlation (0.45) previously reported 
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Table 2. Numbers of sires, cows in validation and reference populations, and CH4, BW, and ECM records in reference population per cross-
validation group

Population

Cross-validation group

1 2 3 4 5 6 7 8 9 10

Sires per group 57 57 57 56 56 57 57 57 56 56
Cows in validation 226 233 206 202 233 222 197 209 220 213
Cows in reference 2,004 1,997 2,024 2,028 1,997 2,008 2,033 2,021 2,010 2,017
CH4 records in reference 12,800 12,652 13,414 12,946 12,843 12,158 13,393 12,927 12,724 12,704
BW records in reference 57,550 56,089 56,737 56,259 59,248 55,062 56,212 57,437 58,589 55,850
ECM records in reference 57,592 56,194 56,837 56,333 59,287 55,251 55,997 57,541 58,707 55,963
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by Lassen and Løvendahl (2016) for CH4 in grams per 
day and ECM in Danish Holstein but lower than 0.74 
reported by Breider et al. (2018) between CH4 grams per 
day and MY in Australian Holstein cows. Also, there 
is an additional increase in accuracy with multivariate 
analysis resulting from better connections in the data 
due to residual covariance between traits (Thompson 
and Meyer, 1986). These moderate and positive genetic 
correlations could be used to increase the accuracy of 
estimation for GEBV of CH4 when including BW and 
ECM information on reference animals in the genomic 
prediction. Furthermore, these genetic correlations will 
be needed to calculate the correlated response and the 
genetic gain of these traits in a multitrait index.

Accuracies of GEBV for CH4

Accuracies of prediction of GEBV for CH4 averaged 
across 10 validation groups per method and scenario for 
BLUP and SSGBLUP are shown in Figure 1.

Per Method. The added information from including 
genotypes is expected to increase the accuracies; how-
ever, this increase was only significant (based on SE) in 
the base scenario and in sub-scenario 4a. Accuracies of 
EBV for CH4 for the base scenario were 0.32 for BLUP 
and 0.42 for SSGBLUP. For 7 of the 13 scenarios, 
accuracies of GEBV obtained using SSGBLUP were 
numerically higher than those obtained using BLUP, as 
expected based on reports in dairy cattle over numer-
ous traits (Hayes and Goddard, 2008; VanRaden et al., 
2009). However, based on the magnitude of standard 
errors of both methods, these results should be inter-
preted with caution.

Given the globally insufficient number of animals 
with CH4 data available, few studies have reported 
accuracies of GEBV for CH4 in cattle. Hayes et al. 
(2016) reported accuracies between 0.26 and 0.38 for 
CH4 traits in Angus beef cattle (CH4 production rate, 
methane yield, and 4 definitions of residual methane) 
using GBLUP and BayesR. Accuracies reported in this 
current study were higher than those reported by de 
Haas et al. (2011) for predicted enteric CH4 emission 
in Holstein cattle using genomic information (0.37) and 
pedigree information (0.21).

Across multitrait scenarios, accuracy for BLUP 
method ranged from 0.10 to 0.72, whereas for SSG-
BLUP it ranged from 0.12 to 0.75. These results have 
shown that multitrait prediction performed similarly 
across methods and on average better than the single-
trait scenario. In this study, adding genotype informa-
tion (SSGBLUP) only significantly increased the ac-
curacy for the single-trait scenario (0.42). This could 
be partially due to only two-thirds of the animals with 
predictor trait information having genotypes.

Per Scenario and Sub-Scenario. The higher ac-
curacies of GEBV of CH4 due to multitrait genomic 
prediction compared with single-trait genomic predic-
tion are in agreement with previous findings in other 
traits in Holstein cows, such as linear type traits (Tsu-
ruta et al., 2011), conception rate (Aguilar et al., 2011), 
and detailed milk protein composition (Gebreyesus et 
al., 2016). On average, scenarios with CH4 information 
performed better than scenarios without CH4, as in 
the absence of CH4 records, the accuracy of estimated 
GEBV relies entirely on the genetic correlations between 
CH4 and routinely recorded predictor traits. This can 
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Table 3. Descriptive statistics for CH4, BW, and ECM

Trait No. of cows No. of records Mean SD Minimum Maximum CV (%)

CH4
1 2,230 14,125 572.6 47.1 450.0 699.9 8

BW (kg) 2,714 61,667 641.1 75.2 387.0 899.9 12
ECM (kg) 2,702 61,610 32.9 8.5 10.00 64.8 26
1CH4 is the natural logarithm of ppm, multiplied by 100.

Table 4. Estimated genetic, permanent environmental, and residual variances, repeatability, heritability 
(diagonal), and genetic (below diagonal) and phenotypic (above diagonal) correlations (SE in parentheses) for 
CH4, BW, and ECM

Trait

Variance

Repeatability

Correlations

Genetic
Permanent 

environmental Residual CH4 BW ECM

CH4 147.6 398.9 500.4 0.51 0.14 (0.05) 0.15 (0.01) 0.25 (0.02)
BW 2,240.7 1,074.8 547.7 0.86 0.50 (0.10) 0.58 (0.03) 0.17 (0.02)
ECM 19.1 15.5 20.4 0.62 0.60 (0.10) 0.26 (0.07) 0.37 (0.03)
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be translated as the GEBV is the correlated response 
of CH4 when including BW and ECM information. 
However, the scenarios without CH4 information in the 
reference population could result in a phenotype for 
CH4 that is only based on ECM and BW, and selecting 
for this phenotype would likely lead to an unfavorable 
correlated response reducing ECM and BW if these 
traits are not included in the selection index.

Furthermore, there are some important messages 
to point out based on the accuracies obtained in this 
study across scenarios. First, the scenarios without in-
formation on CH4 but with information on predictor 
traits in both validation and reference population (3) 
achieved similar accuracies than the scenarios with CH4 
records and only predictor traits on only the reference 
population (4). However, the genetic gains achieved via 
each scenario would vary greatly. In scenario 3 with 
no CH4, all the genetic variation of CH4 comes from 
ECM and BW, implying that a reduction in CH4 will in 
practice be coming from selecting smaller animals that 
produce less milk, which is counterintuitive to the aim 
of profitable dairy production. Conversely, scenario 4 
with CH4 information has the full genetic variation of 
CH4, including the fraction that is not solely explained 
by ECM and BW. In principle, in scenario 4 with CH4 
information included, using all traits in a selection index 

can achieve selection for lower or reduced emitting ani-
mals when increasing or maintaining milk production 
[i.e., improved methane intensity (CH4/L of ECM)]. 
Second, scenario 5, which has CH4 information only in 
the reference population plus the correlated predictor 
traits (ECM and BW) in both reference and validation 
population achieved the highest accuracies. However, 
because GEBV are usually predicted for young animals 
before they have their own phenotypes, scenario 5 is 
not closely aligned with genomic selection schemes in 
practice, where such a scheme is more related to sce-
nario 4. Yet, this scenario could be important when 
trying to predict CH4 in second or later lactation cows 
(with ECM and BW information available).

Across sub-scenarios, we observed that adding in-
formation on BW does not improve the accuracy of 
prediction of CH4 compared with adding ECM. This 
discrepancy in accuracies between predictor traits can 
be explained by the relatively higher genetic correla-
tion between CH4 and ECM compared with CH4 and 
BW (Table 4). In addition, sub-scenarios with BW 
and ECM information in both reference and valida-
tion populations performed better than the scenarios 
having the extra information on only the reference 
population. Similarly, Pszczola et al. (2013) reported 
higher accuracies of prediction for DMI in Holstein 

Manzanilla-Pech et al.: GENOMIC PREDICTION OF METHANE

Figure 1. Accuracies of prediction of genomic EBV for methane, averaged across 10 validation groups per sub-scenario for BLUP and single-
step genomic BLUP (SSGBLUP). CH4 = methane concentration, OR = only reference, VR = validation + reference. Error bars represent SE.
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cows when including predictor traits in the validation 
and reference population compared with including 
them only in the reference population. Additionally, in 
this study the sub-scenarios including both BW and 
ECM achieved higher accuracies than the inclusion of 
only one of them, except for the scenario without CH4 
information but with BW and ECM in both reference 
and validation population, where a marginal stochastic 
difference was reported. Likewise, Pszczola et al. (2013) 
reported higher accuracies (0.62–0.63) when both traits 
were included compared with including only one trait 
(0.47–0.57) for BLUP and GBLUP.

As mentioned before, the gain in accuracy of GEBV 
of the goal trait in multitrait genomic prediction is con-
ditional on the magnitude of the genetic correlations 
between the goal trait and the predictor traits included 
in the multitrait analysis. Jia and Jannink (2012) 
stated that the relative difference in the heritability 
of the goal trait to predictor trait(s), as in our study 
(Table 4), also influences the accuracy of the goal trait 
GEBV, where the gain in accuracy is higher when the 
heritability of the goal trait is relatively lower than the 
predictor traits. Within this context, Jia and Jannink 
(2012) showed the effect of genetic correlation between 
the traits on the prediction accuracy of the goal trait 
depends on the magnitude of the heritability estimates 
of the goal trait, being more remarkable when the 
heritability of the goal trait is low (0.1) and almost 
imperceptible when the heritability of the goal trait is 

high (0.5). This means that for a trait with low heri-
tability it is more important to have higher correlation 
with the other trait(s) than for a trait with moderate 
to high heritability. Additionally, Calus and Veerkamp 
(2011) stated that lowly heritable traits could borrow 
information from correlated highly heritable traits and 
consequently achieve higher prediction accuracy.

Bias of GEBV for CH4

Coefficients of regression are a measure of slope bias 
in terms of the variance of the GEBV relative to the 
adjusted phenotype. Figure 2 shows the coefficients 
of regression of the adjusted phenotype on the GEBV 
across methods and scenarios. Coefficients larger than 
1 indicate underestimation and smaller than 1 indicate 
overestimation.

Per Method. On average, the regression coefficient 
for the base scenario (single trait) was not different from 
the regression coefficients estimated for SSGBLUP, in-
dicating that there is practically no bias on the estima-
tion of the breeding values. For the multitrait scenarios, 
the regression coefficients varied widely within methods 
(between 0.34 and 1.02 for BLUP, and 0.48 and 0.95 for 
SSGBLUP). The regression coefficients did not vary so 
much across methods for most scenarios.

Per Scenario and Sub-Scenario. In general, 
the regression coefficients performed consistently per 
scenario and sub-scenario, similar to the accuracies. 

Manzanilla-Pech et al.: GENOMIC PREDICTION OF METHANE

Figure 2. Bias (coefficient of regression) of genomic EBV for methane, averaged across 10 validation groups per sub-scenario for BLUP and 
single-step genomic BLUP. CH4 = methane concentration, OR = only reference, VR = validation + reference. Error bars represent SE.
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The multitrait scenarios ranked as follows: scenario 2 
ranged from 0.34 to 0.64; scenario 3 ranged from 0.48 
to 1.11; scenario 4 ranged from 0.60 to 0.88; scenario 5 
ranged from 0.60 to 1.06. Sub-scenarios from scenario 
3, without CH4 and with information on BW and ECM 
only in the reference population, showed more bias 
than the other scenarios. Additionally, sub-scenarios 
from scenario 4, without phenotypic observations for 
BW and ECM in the validation population, showed 
more bias than scenarios with phenotypic observations 
for BW and ECM in the validation population as a 
result of a possible incorrect scale of the variance of 
the GEBV (Pszczola et al., 2013). Sub-scenarios from 
scenarios 5, with CH4 and information on BW and 
ECM in both validation and reference population, were 
almost unbiased with regression coefficients closer to 
unity compared with the other scenarios. In addition, 
Song et al. (2019) reported that bias reduces in a mul-
titrait genomic prediction (compared with the single 
trait) when the genetic correlation between the traits 
is high.

Finally, in terms of bias, our study has also shown 
that 4 of the 5 sub-scenarios with better accuracies of 
GEBV also had the least biased regression coefficient 
estimates, without significant differences from the unity. 
The 4 sub-scenarios were 3b (ECM_VR; 0.95–1.11), 4c 
(CH4+BW+ECM_OR; 0.78–0.88), 5b (CH4+ECM_
VR; 0.90–1.02), and 5c (CH4+BW+ECM_VR; 0.92–
1.06).

Correlations Between Scenarios

In genomic prediction it is common practice to re-
port accuracies and bias of GEBV predictions, but 
these metrics only reflect the correlation between the 
predicted GEBV and the true phenotype (in this case 
the adjusted phenotype) corrected by the heritability 
of the trait. However, when using multitrait genomic 
prediction, it is important to understand where the 
variation of GEBV comes from. One way to do this is 
calculating the correlation between the GEBV from the 
different scenarios with the GEBV from the single-trait 
(base) scenario. In Table 5, we report the average cor-
relations between CH4 GEBV estimated by SSGBLUP 
method per scenario across 10 cross-validation groups. 
The correlations between the GEBV from the multi-
trait scenarios and the GEBV from the base scenario 
(single trait) used as a proxy for the best estimate of 
the true GEBV of CH4 clearly discriminated between 
the scenarios which included CH4 records in the refer-
ence population or not. For instance, the correlations 
between the base scenario and scenarios 2 and 3 were 
low (0.18–0.33), whereas scenarios 4 and 5, which in-

cluded CH4 in the reference population, where moder-
ate to high (0.41–0.81). Furthermore, when comparing 
multitrait scenarios with and without CH4 (i.e., sce-
narios 2 vs. 4 and scenarios 3 vs. 5) the correlations 
are moderate to high, but not close to the unity. This 
result demonstrates that including CH4 information 
in the reference population is also adding additional 
information over and above ECM and BW. Scenario 
3, which performed similarly to scenario 4 in terms of 
accuracy and bias, had the poorest correlations with 
the base scenario GEBV (0.17–0.22). Promisingly, sce-
nario 4, which is the most closely aligned to genomic 
selection schemes in practice and is the most likely to 
result in restricted CH4 with increasing milk produc-
tion (i.e., dilution of CH4), had the highest correlations 
(0.72–0.81) with the base scenario.

Implications

In terms of gain in accuracy (in percentage) compared 
with the base scenario, our results have shown that in-
cluding information on ECM and BW can increase the 
accuracy of GEBV for CH4 from 29% (scenario 4) up to 
90% (scenario 5). However, the most feasible multitrait 
scenario, not only in terms of increased accuracy com-
pared with the single-trait scenario but also one that 
could be used in practice when predicting CH4 for young 
candidates, is the scenario with CH4 and information 

Manzanilla-Pech et al.: GENOMIC PREDICTION OF METHANE

Table 5. Average pairwise comparison correlations between genomic 
EBV estimated by SSGBLUP method per scenario and sub-scenario 
across 10 cross-validation groups1

Scenario/ 
sub-scenario 1

2 
a b c

3 
a b c

4 
a b c

1         
2
  a 0.18      
  b 0.33
  c 0.25
3
  a 0.17 0.55    
  b 0.22 0.53
  c 0.17 0.28
4
  a 0.79 0.61 0.39  
  b 0.81 0.67 0.44
  c 0.72 0.53 0.23
5
  a 0.67 0.45 0.81 0.73
  b 0.68 0.46 0.85 0.72
  c 0.41 0.32 0.78 0.70
1SSGBLUP = single-step genomic BLUP. OR = only reference; VR 
= validation + reference. 1 = base scenario. 2a = BW_OR; 2b = 
ECM_OR; 2c = BW+ECM_OR. 3a = BW_VR; 3b = ECM_VR; 3c 
= BW+ECM_VR. 4a = CH4+BW_OR; 4b = CH4+ECM_OR; 4c = 
CH4+BW+ECM_OR. 5a = CH4+BW_VR; 5b = CH4+ECM_VR; 5c 
= CH4+BW+ECM_VR.
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on ECM and BW only in the reference population. Fur-
thermore, we should be aware that part of the gain in 
accuracy when using ECM to predict CH4 is partially 
due to the higher accuracy of predictions for ECM, 
which were 0.50 and 0.65 for the base scenario (BLUP 
and SSGBLUP, respectively), much higher than the 
estimates for CH4. Moreover, the increase in accuracy 
using predictor traits in a multitrait approach has a 
plateau, meaning that there is a maximum of improve-
ment that can be achieved by adding information on 
correlated traits. In addition, although using only ECM 
and BW records to predict CH4 in the absence of CH4 
records leads to increased individual accuracies in CH4, 
this scenario can lead to a reduction of methane only 
at the cost of genetic gain for MY. Therefore, recording 
CH4 in more animals remains a priority. To restrict or 
reduce gain in CH4 without reducing gains in ECM 
or BW, a multitrait selection index is needed where 
all the economically important traits are included. A 
recent study (C. I. V. Manzanilla-Pech, unpublished 
data) shows that is possible to reduce methane and still 
have a positive genetic gain on ECM using 2 strategies, 
either applying a penalization (negative economic value 
for CH4) or by including a negative economic value for 
residual feed intake. Both strategies would lead to a 
reduction on CH4 without compromising the genetic 
gain on ECM and will represent an improvement in 
terms of CH4 per liter of milk.

Finally, is it well known that heritability is a determi-
nant factor for the calculation of the optimal reference 
population size, and this is directly proportional to the 
maximum accuracy achieved in the genomic prediction 
(Daetwyler et al., 2010). Given that in the CH4 case 
both are limited (low heritability and small reference 
population size), it is recommended to investigate the 
optimal reference population size (and structure) that 
maximize the accuracy of prediction of GEBV for CH4 
with the current heritability. Finally, there are other 
important traits highly correlated with CH4 that could 
contribute to increase the accuracy of prediction of 
GEBV for CH4, such as feed intake, feed efficiency (re-
sidual feed intake), and energy balance, among others. 
However, given that these are scarcely recorded traits, 
collecting information on them and further investigat-
ing on their interactions would be needed.

CONCLUSIONS

Multitrait genomic prediction leads to higher pre-
diction accuracy than traditional single-trait genomic 
prediction, particularly when predictor traits are highly 
genetically correlated with the goal trait. This is benefi-
cial for scarcely recorded traits, where phenotypes are 

not available on all individuals but routinely recorded 
traits are. Adding genotypic information to increase the 
accuracy of prediction for CH4 showed a significant ad-
vantage for the base single-trait scenario but not in the 
multitrait scenario. We conclude that the most feasible 
multitrait scenario in terms of feasibility when predict-
ing CH4 for young candidates is the scenario with CH4, 
ECM, and BW information in the reference population. 
This scenario also proved to be the one most correlated 
with the base scenario.
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