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Abstract  16 

Low-temperature cooking such as sous-vide has become a favored method for processing seafood. In 17 

order for this method to be applicable for retail products, combinations with other processing steps 18 

are needed to keep the products safe and durable while maintaining high quality. The present 19 

experiments were designed to investigate the influence of low-temperature treatment (40, 50, or 60 20 

°C) in combination with various packaging technologies (modified atmosphere (MA) or soluble gas 21 

stabilization (SGS)) on both the microbial growth as well as the physiochemical quality. Salmon loins 22 

were either kept natural or inoculated with Listeria innocua prior to drying (16-18h) in either 100% CO2 23 

(SGS) or atmospheric air (MA packaging). All samples were sous-vide treated, repackaged in MA and 24 

stored at 4 ᵒC for 24 days. The results showed shelf life to be significantly improved with the 25 

implementation of SGS, prolonging the of lag-phase and slowing the growth rate of both naturally 26 

occurring and inoculated bacteria. Variations in packaging technology did not significantly influence 27 

any of the tested quality parameters including drip loss, surface color, and texture. Consumers 28 

increasing demand for lightly processed seafood products makes Listeria spp. an increased problem, 29 

however the present experiment has shown that it is possible to lower processing temperatures to as 30 

little as 40 or 50 °C and still obtain inhibition of Listeria, but with improved chemical quality compared 31 

to traditional processing. 32 

Keywords 33 

Atlantic salmon, lightly processed, Listeria spp, microbial quality, modified atmosphere packaging, 34 

physiochemical quality, soluble gas stabilization, sous-vide.  35 

1. Introduction  36 

Easy-to-prepare and ready-to-eat meals are increasingly perceived as an optimal solution in a modern 37 

lifestyle. This has led to a tremendous increase in the demand for tasty, nutritious, high quality, and 38 

yet convenient food products.  39 
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Seafood is the second largest export sector in Norway, after oil and gas, and salmon make up the 40 

largest individual product group within this sector. This has led to Norway being the world’s largest 41 

producer of farmed salmon (Asche, Roll, & Tveteras, 2009). Currently, Norwegian salmon is mostly sold 42 

in whole fresh or frozen form (Straume, 2017) however, contemporary trends for consumption of 43 

lightly processed seafood (Speranza, Corbo, Conte, Sinigaglia, & Del Nobile, 2009) have increased the 44 

market for valueadded salmon products. This emphazising the need for devolping and testing of 45 

processing methods which allow production of tasty, safe, and durable salmon products with minimal 46 

heat treatment. 47 

The consumer demands make sous-vide cooking a favored light processing option. By heating in sealed 48 

pouches at a lower temperature, sous-vide cooking offers multiple benefits compared to traditional 49 

cooking of seafood (Baldwin, 2012). The benefits include reduced heat damage to proteins and lipids 50 

and diminishing the loss of liquid, nutrients, and aromatic compounds while improving the perceived 51 

texture (Singh et al., 2016). Two factors are influential in relation to the shelf life extension obtain by 52 

sous-vide cooking; the intensity of the applied heat and the control of subsequent storage 53 

temperatures (García-Linares, Gonzalez-Fandos, García-Fernández, & García-Arias, 2004). Increased 54 

temperature or time during heat treatment has the potential to prolong the shelf life further, but at 55 

the same time leads to a significant decrease in organoleptic quality.  Low storage temperature is 56 

necessary to ensure the microbial safety of sous-vide cooked products (García-Linares et al., 2004), yet 57 

many food products are subject to temperature abuse during transport, selling, or storage. This 58 

emphasizes the need for further preservation steps in a form of hurdle technology (Baldwin, 2012). 59 

Multiple technologies are being used for this purpose, and modified atmosphere (MA) packaging has 60 

become a well-established method (Bouletis, Arvanitoyannis, & Hadjichristodoulou, 2017; Lambert, 61 

Smith, & Dodds, 1991).  62 

Depending on species and temperature MA packaging has been found to extend shelf life of seafood 63 

products by several days compared to air storage (Powell & Tamplin, 2012; Sivertsvik, Rosnes, & 64 
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Kleiberg, 2003; Speranza et al., 2009; Torrieri, Cavella, Villani, & Masi, 2006; Tsironi & Taukis, 2010; 65 

Özogul, Polat, & Özogul, 2004). The amount of dissolved CO2 in the foods is proportional to the 66 

inhibitory effect of MA packaging (Devlieghere, Debevere, & Van Impe, 1998a, 1998b). Thus 67 

constricting the optimal use of MA packaging by the need for a high gas to product ratio to avoid 68 

packaging deformation due to CO2 dissolvement when high CO2 levels are introduced (Rotabakk, 69 

Birkeland, Jeksrud, & Sivertsvik, 2006). Dissolvement of CO2 prior to retail packaging, a method known 70 

as soluble gas stabilization (SGS) (Sivertsvik, 2000) has the ability to overcome this drawback. 71 

Regardless of the choice of modified atmosphere applied, the altering of the gas composition in the 72 

packages also alters the microbial community (Yesudhason, Lalitha, Gopal, & Ravishankar, 2014). The 73 

identified dominant spoilage strains for MA packaged seafood includes lactic acid bacteria (LAB) (Gram 74 

& Huss, 1996), Brochotrix thermosphacta (Macé et al., 2012; Sivertsvik, 2003) as well as 75 

Photobacterium phosphoreum (Dalgaard, Mejlholm, Christiansen, & Huss, 1997). Both B. 76 

thermosphacta and P. phosphorerum have been shown to be limited by either heat (Gram & Huss, 77 

1996) or by CO2 levels equivalent to those obtained by SGS-treatment (Abel, Rotabakk, & Lerfall, 2019). 78 

The processing inhibition of aerobic spoilage microflora has the potential to rendering the food unsafe 79 

for consumptions before it appears spoiled (Sivertsvik, Jeksrud, & Rosnes, 2002), thus making the 80 

control of pathogens such as Listeria monocytogenes and Clostridium spp. an even more important 81 

task.   82 

Multiple studies have been performed on the effect of either heat-treatment or packaging technology 83 

on seafood shelf life or product quality; however, research regarding combinations of such 84 

technologies on both shelf life and product quality are limited. Hence, the aim of this study is to gain 85 

knowledge of quality deterioration and microbial development in lightly processed salmon, by studying 86 

the effect of combined low heat treatment, MA packaging, and SGS technology on the microbial load 87 

as well as perceived product quality parameters.   88 
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2. Materials and methods  89 

A three-factor challenge- storage study was conducted, the factors being degree of heat treatment 90 

(core temperature of 40, 50, or 60 °C), packaging technology (MA packaging or SGS followed by MA 91 

packaging), and microbial flora (natural or inoculated with Listeria innocua) (Table 1). The microbial 92 

and physiochemical development was evaluated coninuesly for a period of 24 days ( at day 0, 6, 10, 93 

13, 17 or 24). The experiments were executed in two rounds, separated based on choice of packaging 94 

technology.   95 

 96 

2.2 Raw material 97 

Pre-rigor filleted farmed Atlantic salmon (Salmo salar L.) (fillet weight of 1-1.4kg) were obtained from 98 

Salmar AS (Frøya, Norway). Fillets were obtained on the day of slaughtering and stored in a fridge 99 

(4.2±2.4 °C) on ice for 3 days to ensure post rigor state before processing. Backfins, belly flaps, and 100 

tails were trimmed in order to obtain a product with equal height (approx. 3cm). Fillets were portioned 101 

into equal size of 79.8±2.3g (Figure 1).  102 

2.3 Bacterial strains  103 

A pure L. innocua culture (-80 ᵒC) (ATCC 33090) were obtained from the culture collection at University 104 

of Gothenburg (CCGU). The cultures were thawed and recovered on brain heart infusion (BHI) agar 105 

(Oxoid CM1136, Oxoid Ltd., Basingstoke, UK) at 37 ᵒC for 24 hours. Single colonies were inoculated 106 

into separate vails of BHI broth (CM1032, Oxoid Ltd., Basingstoke, UK) for enrichment and incubated 107 

at 8 ᵒC for 5 days. The procedure resulted in cold-adapted cultures in an early stationary growth phase. 108 

Samples were diluted to OD600 of approximately 0.1 (0.104-0.110) in order to obtain a cell 109 

concentration of approximately 1x105 colony forming units (CFU) x ml-1 (2.7x105 CFU x ml-1).  110 
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2.4  Inoculation 111 

100 µL inoculum were dispersed on the surface of half the samples (estimated 104 CFU x surface-1) and 112 

all the samples were air-dried for 10 min. The rest of the samples were kept natural, without any 113 

inoculation. All the samples were packed in batches (n=13) on trays (C2325-1C, Færch Plast, Holstebro, 114 

Denmark) in vacuum pouches (425x650 mm PA/PE sous-vide pouch, Maske AS, Trondheim, Norway, 115 

filling degree approx. 17%). The pouches were filled with either atmospheric air (in case of MA 116 

packaged samples) or pure CO2 in excess (in case of SGS samples) using a chamber machine 117 

(Webomatic SuperMax s3000, Webomatic, Bochum, Germany). Samples were stored at 3.7±0.5 ᵒC for 118 

16-18 h to dry completely and to ensure CO2 saturation of the SGS-samples. Four replicates were 119 

prepared and analysed of each sample at each sampling point, a total of 28 for each treatment group.  120 

2.5  Heat treatment and packaging 121 

Samples were repacked in vacuum pouches (135x180 mm PA/PE sous-vide pouch, Maske AS, 122 

Trondheim, Norway) using a chamber machine (Webomatic SuperMax s3000, Webomatic, Bochum, 123 

Germany). A sous vide water bath (Diamond M, Fusionchef by Julaba, Germany) was used for all heat 124 

treatments. Temperatures were 45 ᵒC (44.6±0.4 ᵒC), 55 ᵒC (54.5±0.2 ᵒC), or 65 ᵒC (64.6±0.1 ᵒC). 125 

Treatment times were 15, 18, or 21 min, respectively. Treatment times were chosen based on pre-126 

experiments conducted to establish time needed to obtain a core temperature 5 °C lower than the 127 

water bath temperature (core temperature of 40, 50, or 60 °C, respectively). All sample pouches were 128 

cooled in ice water and fish samples repackaed in 300 ml semi-rigid crystalline polyethylene 129 

terephthalate (CPET) trays (C2125-1B, Færch Plast, Holstebro, Denmark) using a semi-automatic tray 130 

sealing packaging machine (TL250, Webomatic, Bochum, Germany). All trays were equipped with an 131 

absorbent. During packaging, the air was evacuated (final vacuum pressure of 25 mbar) and flushed 132 

with the pre-set MA gas mixture prior to application of a cover film comprised of a 40 μm combination 133 

of polyethylene (PE), ethylene vinyl alcohol (EVOH), polyamide (PA), and polyethylene terephthalate 134 

(PET) (Topaz B-440 AF, Plastopil, Almere, The Netherlands). Food grade CO2 and N2 were mixed to 60% 135 
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CO2 balanced with N2 (both MA and SGS) using a gas mixer (MAP Mix 9000, Dansensor, Ringsted, 136 

Denmark). All handling were done aseptically. Oxygen transmission rate (OTR) was 66-78 cm3 x 25 μm 137 

x m-2 x 24 h1 x bar1 at 23 ˚C for the tray, 2.5 cm3 x 40 μm x m-2 x 24 h1 x atm1 at 23 ˚C for the cover film, 138 

and 50 cm3/m2 × 24 h1 × bar1 at 23 °C for the vacuum pouches. Packaging resulted in a sample filling 139 

degree of approximately 1:3.  140 

After packaging, the trays were stored at 2.4±1.0 ˚C for up to 24 days.  141 

2.6 Chemical analysis 142 

2.6.1 Headspace gas analysis 143 

The headspace gas composition (% O2 and CO2) was measured using an oxygen and carbon dioxide 144 

analyzer (Checkmate 9900 analyzer, PBI-Dansensor, Ringsted, Denmark) as described by Abel, 145 

Rotabakk, Rustad, and Lerfall (2018). The gas compositions were measured at storage day 0, 6, 10, 13, 146 

17, and 24. 147 

2.6.2 Water-, lipid-, and protein content   148 

Water content was determined gravimetrically by drying the samples for 24 hours at 105˚C (ISO.6496, 149 

1983). Lipids were extracted and the total amount calculated gravimetrically as described by Bligh and 150 

Dyer (1959). Protein content was calculated based on the total Kjeldahl nitrogen method, using an 151 

automated Kjeldahl digester (KjeldDigester K-449, Büchi, Flawil, Switzerland) and titration-system 152 

(KjelMaster K-375, Büchi, Flawil, Switzerland) equipped with an autosampler (KjelSampler K-376, 153 

Büchi, Flawil, Switzerland). Only the raw material underwent composition analysis.  154 

2.6.3 Drip loss and water holding capacity (WHC)  155 

Drip loss was calculated by the difference in weight of the tray plus absorbent between day 0 and days 156 

6, 10, 13, 17, and 24. WHC was measured as described by Skipnes, Østby, and Hendrickx (2007) using 157 

metal carriers (Part No. 4750, Hettich Lab Technology, Germany) and centrifuged (Rotina 420 R, 158 
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Hettich centrifuge) for 15 min at 4 °C, using a free swing rotor at RCF = 530×g. The WHC was measured 159 

in triplicates of each group on day 6 and 24 of storage to obtain start and end values.  160 

2.6.4 Surface color  161 

Sample surface color (CIE Lab) was assessed by a digital photo imaging color-measuring system  162 

(DigiEye full system, VeriVide Ltd., Leicester, UK). Analysis were carried out in a standardized lightbox 163 

(6400 K) using a digital camera (Nikon D7000, 35 mm lens, Nikon Corp. Japan). The pictures were 164 

analyzed with DigiPix software ver 2.8.0.2 (VeriVide Ltd., Leicester, UK). Changes in perceived color 165 

were calculated as ΔE in accordance with the formula 𝐸𝐸 = �𝑆𝑆𝐿𝐿2 + 𝑆𝑆𝐶𝐶2 + 𝑆𝑆𝐻𝐻2 where 𝑆𝑆𝐿𝐿 = ∆𝐿𝐿/2, 𝑆𝑆𝑐𝑐 =166 

∆𝐶𝐶/(1 + 0.048 ∗ 𝐶𝐶1), 𝑆𝑆𝐻𝐻 = ∆𝐻𝐻𝑎𝑎𝑎𝑎/(1 + 0.014 ∗ 𝐶𝐶1) and ∆𝐻𝐻𝑎𝑎𝑎𝑎 = √∆𝑎𝑎2 + ∆𝑏𝑏2 − ∆𝐶𝐶2 as described by 167 

CIE Int. Commission on Illumination (1994). ΔE values higher than 4 are normally visible to the human 168 

eye (Lerfall, 2011). 169 

2.6.5 Texture  170 

Instrumental textural analyses were performed using a Texture Analyzer TA-XT2 (SMS Ltd., Surrey, 171 

England) fitted with a 30 kg load cell and a Warner Bratzler probe (SMS Ltd., Surrey, England). The 172 

force-time graph was obtained by the Texture Exponent software for Windows (version 6.1.7.0, SMS 173 

Ltd., Surrey, England), which was used for the data analyses. The analyses were performed in four 174 

times replicates for each group immediately after processing and cooling. The analysis was done at a 175 

speed of 1 mm x s-1, and measurements were performed until 100% penetration was achieved. 176 

Portioned raw and treated samples (Figure 1) were placed with the probe adjacent to the mid line, to 177 

ensure measures were a result of shearing rather than flaking of the muscle fibers.   178 

2.6.6 Degradation products of adenosine triphosphate (ATP) 179 

Degradation products of ATP was analysed on a Phenomenex synergi 4u hydro-RP80 A (150×4.6mm, 180 

4µm) HPLC column after a method by Sellevold, Jynge, and Aarstad (1986), using an Agilent 1290 181 

chromatograph (Agilent technologies, Paolo Alto, CA, USA) (isocratic, flow 1.0 mL/min)  connected to 182 
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an Agilent 1260 diode array UV-VIS detector, as described by  Lerfall, Jakobsen, and Bjørge Thomassen 183 

(2018). Standard curves of ATP (Sigma, ≥99%, CAS:34369-07-8), ADP (Sigma, ≥95%, CAS:20398-34-9), 184 

AMP (Sigma, ≥99%, CAS:149022-20-8), IMP (Sigma, ≥98%, CAS:352195-40-5), HxR (Sigma, ≥99%, 185 

CAS:58-63-9) and Hx (Sigma, ≥99.0% CAS:68-94-0) in deionized water were used for identification of 186 

quantification.  187 

2.7 Microbial analysis 188 

Microbial analyses were prepared using 10 g of fish sampled aseptically from the inoculated surface. 189 

The fish sample was homogenized in 90ml sterile 0.85% NaCl (w/v) and 0.1% peptone (w/v) water for 190 

60 sec. Decimal dilution series were prepared in similar solution in accordance with NMKL-standard 91 191 

(NMKL, 2010). 192 

Natural bacterial flora (NBF) samples were analyzed for total aerobic plate count, Clostridium spores, 193 

Listeria spp., and LAB. Inoculated samples were analyzed for total aerobic plate count and Listeria spp. 194 

Negative control samples were tested for total aerobic plate count, Clostridium spores, Listeria spp., 195 

and LAB.   196 

Total aerobic plate count was analyzed as pour plates with a top layer of Lyngby iron (LI)-agar  197 

(CM0964, Oxoid Ltd., Basingstoke, UK) prepared as described by the manufacturer, and incubated 198 

aerobically at 22 ᵒC (21.6±0.4 ᵒC) for 3 days, in accordance with NMKL-184 (NMKL, 2006).  Presence of 199 

sulfite-reducing Clostridium spores was analyzed in accordance with NMKL-56 (NMKL, 2008) on Shahidi 200 

Ferguson Perfringens (SFP) agar base (DIFCO28110, Thermo Fisher Scientific, Waltham, MA, USA) 201 

prepared as described by the manufacturer, but without the addition of egg yolk. Dilution of the 202 

sample material was heated at 80 °C for 10 minutes prior to plating in order to inhibit any vegetative 203 

cells. Samples were incubated anaerobically at 15 ᵒC (15.1±0.6 ᵒC) for 5 days. Presence of Listeria spp. 204 

were tested on Brilliance™ listeria agar (BLA) containing Brilliance™ listeria selective supplement 205 

(Oxoid CM1080 and Oxoid SR0227, Oxoid Ltd., Basingstoke, UK) prepared as described by the 206 

manufacturer, and incubated aerobically at 37 ᵒC (37.1±0.2 ᵒC) for 24±2 h. Presence of LAB was tested 207 
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as described in NMKL-140 (NMKL, 2007) on de Man, Rogosa and Sharpe (MRS)-agar (Oxoid CM0361, 208 

Oxoid Ltd., Basingstoke, UK) with 10 mg/l amphotericin B, and inoculated at 25 ᵒC (25.8±0.2 ᵒC) for 3 209 

days.  210 

Sampling was performed of the raw material, inoculated samples, and on all stored samples after 0, 6, 211 

10, 13, 17, and 24 days storage in accordance with experimental design (Table 1). 212 

2.8 Statistics 213 

Statistical analyses included outlier test (Grubbs outlier test at level p<0.05), analysis of variance 214 

(ANOVA) and general linear modeling (GLM, Tukey’s HSD test at level p<0.05). All data processing  were 215 

carried out using Minitab 17.0 (Minitab, Coventry, UK). To meet the requirements of equal variance 216 

and normal distribution, all statistical analyses of microbial growth were done on log-transformed 217 

data.  218 

Data were analysed in 4 time replicate and is presented as mean ± standard deviation (SD) unless 219 

otherwise stated. 220 

3. Results and discussion 221 

A GLM showed all parameters (core temperature, packaging technology, and storage time) as well as 222 

all the interaction effects to be of significant influence on the amount of microbial growth (p<0.001) 223 

for both natural- and inoculated samples. No correlation was found between packaging technology 224 

and color, WHC, drip loss, or formation of ATP-degradation products. Processing temperature 225 

influenced all of the tested parameters (p<0.001)  226 

3.1 Quality analyses  227 

A concern when it comes to the implementation of SGS is the influence on the quality of the product. 228 

The appearance of food products is of major importance to consumers, both with regards to 229 

acceptability and preference. When it comes to salmon, the color is generally perceived as one of the 230 

most important quality parameters (Anderson, 2000). In the present experiments, the only results that 231 
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yielded ΔE values above the noticeable limit was comparisons between temperature treatments, 232 

showing increased lightness (L*) and decreased redness (a*) and yellowness (b*) with increasing 233 

temperatures (Figure 2), as reported by Bhattacharya, Choudhury, and Studebaker (1994). This result 234 

can be explained by the increased protein denaturation and coagulation of sarcoplasmic proteins on 235 

the surface caused by the increased temperatures. Broadly speaking, fish muscle proteins are 236 

separated into three groups, with the more important proteins being myosin, actin and the 237 

sarcoplasmic proteins. Multiple studies have demonstrated the temperature stability of these 238 

proteins, and it is generally agreed that heat denaturation of myosin in salmon occurs in a range of 43-239 

50 °C, actin around 76-78 °C and the sarcoplasmic proteins, which a more diverse group, in a broad 240 

range from 57-67 °C (Ovissipour, Rasco, Tang, & Sablani, 2017). In the present study, the heat 241 

treatments were carried out at 45, 55, and 65 °C, respectively. This would indicate that only limited 242 

protein denaturation would have taken place at 45 °C, whereas myosin would be completely 243 

denatured at 55 °C and at least some of the sarcoplasmic proteins in the 65 °C samples. Temperatures 244 

never reach levels of actin denaturation. 245 

The results of the color analysis also show that neither choice of packaging technology nor storage 246 

time gave rise to any perceivable changes in color (average a*=14.5±3.4, b*=9.4±2.2, L*=67.0±2.4, 247 

ΔE=2.2±1.3). These findings are in agreement with those by Rotabakk, Birkeland, Lekang, and Sivertsvik 248 

(2008) on halibut, or by Mendes and Gonçalves (2008) in sea bream and sea brass. As for the color 249 

analysis, WHC was found not to be significantly influenced by treatment temperature, packaging 250 

technology, or duration of storage (p=0.054-0.926). Average WHC was measured to be 70.9%. The lack 251 

of differences in WHC  is in agreement with the fact that no significant differences (p<0.001) were 252 

observed in drip loss as a result of either temperature or packaging technology (Table 2). In contrast, 253 

a close relationship has previously been established between protein denaturation and WHC (Kong, 254 

Tang, Rasco, Crapo, & Smiley, 2007) and hence drip loss. WHC is highly dependent on the properties 255 

of myosin, thus expecting WHC to decrease once myosin denaturation temperatures have been 256 

reached (Ofstad, Kidman, Myklebust, & Hermansson, 1993). The reason for the discrepancy is not 257 
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understood. Moreover, it has been reported that an increase in dissolved CO2 will alter WHC and 258 

increase drip loss (Davis, 1998; Randell et al., 1999) as reported for halibut (Rotabakk et al., 2008) and 259 

shrimps (Sivertsvik & Birkeland, 2006). The effect was then ascribed to volume reduction caused by 260 

the uptake of CO2 by the product, an effect which is counteracted by the use of SGS prior to MA 261 

packaging (Rotabakk et al., 2008). An alternative explanation could be that the presence of CO2 during 262 

the heat treatment increased the cook loss thereby limiting the drip loss later in the storage; however, 263 

cook loss was not measured in the present study. The significant differences between processing 264 

temperature in results for all the tested quality parameters show the potential to improve quality by 265 

lowering of the processing temperature. At the same time, the lack of significant differences between 266 

packaging technology treatments facilitates the lowering of this temperature without affecting the 267 

quality by itself.  268 

Just as perceived color, tenderness of foods is another important parameters regarding consumer 269 

satisfaction (Bhattacharya, Choudhury, & Studebaker, 1993). Particularly the shear force has been 270 

cited as an influential factor for consumer opinions (Jonsson, Sigurgisladottir, Hafsteinsson, & 271 

Kristbergsson, 2001; Sigurgisladottir et al., 1999). Protein denaturation is known to play an important 272 

role in the toughening of the texture of muscle products (Hatae, Yoshimatsu, & Matsumoto, 1990). 273 

The influence of both treatment temperature and packaging technology were analyzed, but the results 274 

were inconclusive as variation in raw material were found to be bigger than variations between 275 

treatments (data not shown). 276 

Fish deterioration is monitored in many different ways, common amongst these are ATP-degradation 277 

products, which is considered a good indicator of fish freshness (Shumilina et al., 2016). Post-mortem 278 

degradation of ATP in fish muscle occurs due to a combination of endogenous and bacterial enzymes 279 

and goes through the intermediate products ADP, AMP, IMP, HxR, and Hx. Most important degradation 280 

products include Hx and IMP, which has been associated with the development of unpleasant and 281 

enhancing flavors in stored fish, respectively (Mørkøre et al., 2010). Regardless of treatments, all 282 
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samples showed a significant drop in IMP levels between storage day 0 and 6. Furthermore, at day 0 283 

no difference was found between temperature treatments within packaging-groups, however at the 284 

end of the storage period, samples treated to 40 °C were significantly lower than those at treated to 285 

50, and 60 °C (p=0.003-0.042) (Figure 3). This can be explained by the enzymatic nature of the 286 

degradation of IMP to HxR.  Higher treatment temperatures yield a higher degree of enzyme 287 

denaturation, causing the degradation of IMP to slow (Surette, Gill, & LeBlanc, 1988).  The temperature 288 

dependence is further highlighted by the fact that the levels of HxR were significantly higher in samples 289 

heated to 40, followed by 50 and lastly 60 °C. For the duration of the entire storage period, only 290 

samples heated to 60 °C with SGS showed any development in HxR levels (Figure 3). The developmental 291 

trend indicates that the conversion rate from IMP to HxR equals that of HxR to Hx. Concerning Hx, no 292 

significant initial differences were observed between temperatures within packaging groups. During 293 

the storage period levels developed into samples heated to 40 °C having significantly higher levels than 294 

those at 50 °C, which in turn was significantly higher than those heated to a core temperature of 60 °C 295 

(p<0.013). As for the formation of HxR, this development is explained by lower temperatures causing 296 

lesser enzyme denaturation. Further, the formation of Hx is partly caused by bacterial action (Surette 297 

et al., 1988), and as seen from the bacterial counts, bacterial levels were significantly higher with 298 

lowering of the core temperature (Table 2), thus further explaining the increased formation of Hx at 299 

lower core temperature. Analysis of ATP degradation products in the raw salmon used in the two round 300 

of experiments (MA or SGS) showed only HxR levels to be significantly different (p=0.037) (data not 301 

shown). This could explain the differences observed between packaging groups in HxR- as well as in Hx 302 

levels, however, it does not explain why significant differences were observed between packaging 303 

technologies for IMP. Due to the differences in initial levels of ATP degradation products observed 304 

between the two batches of raw material, it is not possible to distinguish potential effect of variation 305 

in packaging technology from the batch variations, rendering comparisons between packaging 306 

technologies infeasible.  307 
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3.2 Microbial community and processing 308 

The raw material for the two rounds of experiments was obtained separately in order to obtain equal 309 

length from slaughtering to processing and analyzing, and thereby equal rigor-state. Unfortunately, 310 

the raw material characteristics were significantly different for the two batches, both regarding protein 311 

content (p=0.003), lipid content (p=0.002), and water content (p=0.002). It has previously been shown 312 

(Abel et al., 2018) that the important parameter for absorption of CO2 and consequently the 313 

bacteriostatic effect of packaging, is the total content of water and liquid lipid. When combing water- 314 

and lipid content from each of the two batches of salmon, no significant differences were seen 315 

between them (p>0.642) rendering the differences in each compound not important. All other inputs 316 

were identical between the two rounds (water bath temperatures p>0.701, packaging gas CO2 317 

concentration p=0.551, and storage temperature p>0.921) and thus the two round is assunmed equal. 318 

Regarding microbial growth, a clear pattern evolved during the study when examining both the natural 319 

flora and the L. innocua-inoculated samples. Regardless of packaging technology, no growth was 320 

observed on any samples heated to a core temperature of 60 °C, the same was the case for SGS treated 321 

samples heated to core temperature of 50 °C. Temperatures were chosen based on pre-trials, which 322 

had shown growth after heat treatment at 40, 50, and 60 °C (data not shown). The pre-experiments 323 

were carried out without the use of modified atmosphere, which might explain the inconsistencies. 324 

Furthermore, regardless of packaging technology higher temperature treatment always lead to a lower 325 

level of recovered bacteria, as expected (Figure 4 and Figure 5). Headspace gas composition analysis 326 

showed that SGS treated samples had significantly higher O2 levels (p<0.001) after equilibrium has 327 

been reached (day 6 and onwards). It has previously been shown the presence of CO2 during the 328 

heating step facilitates a higher heat inactivation of the bacteria (Abel et al., 2019; Loss & Hotchkiss, 329 

2002), however, this was not observed in the present study (Figure 4 and 5). In the case of L. innocua-330 

inoculated samples, heat treatment to a core temperature of 40 °C led to an insignificant reduction in 331 

CFU (p>0.072) unlike that seen for the 50 °C samples (p<0.001), regardless of presence of CO2. This led 332 

to no differences in bacterial count at day 0 between samples packed using MA or SGS when heated 333 
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to 40 °C core temperature. On the other hand, samples heated to a 50 °C core temperature showed 334 

significantly higher initial CFU levels (p<0.001) when treated with CO2 prior to heating (SGS samples). 335 

This can be explained by a visible bloating that arose during the heat treatment. The solubility of CO2 336 

is highly temperature dependent (Sivertsvik, Jeksrud, Vågane, & Rosnes, 2004), thus heating at 337 

temperatures as high as 55-65 °C for prolonged periods will decrease the solubility of CO2, causing it 338 

to desorb from the salmon and into the headspace of the vacuum pouch. This forms a layer of gas 339 

surrounding the sample, protecting the samples from the heat of the water bath, thus redering the 340 

heat load less than anticipated. Despite the higher initial count from the SGS-treated samples, the 341 

bacterial counts are equal already at day 6 and surpassed by the MA packaged samples from day 10 342 

and onwards (p=0.001-0.035). This effect is ascribed to the fact that samples treated in 55 °C water 343 

and packed using SGS showed no significant bacterial growth throughout the entire 24 days of storage 344 

(Figure 4 and Table 3). The experiments were performed in two rounds, and no significant differences 345 

were observed between bacterial counts in either inoculum or from samples right after inoculations. 346 

This means that the outgrowing on the MA packaged samples can be ascribed to the processing and 347 

not variations between samples. It has been suggested by multiple studies that increased CO2 level will 348 

increase the inhibitory effect of Listeria spp., e.g. by reducing the growth rate (Augustin & Carlier, 2000; 349 

Devlieghere et al., 2001; Farber, Cai, & Ross, 1996; Provincial et al., 2013), as seen in the present study 350 

(Table 3).  However, to the best of our knowledge, this is the first time it has been proven that growth 351 

of L. innocua can be completely inactivated for as long as 24 days of storage, under the given 352 

conditions.  Industry practice calls for a heat-treatment at no less than 70 °C for 2 min (concerning 353 

Listeria spp.; Advisory Committee on the Microbiological Safety of Food (2009)) in order to ensure a 354 

safe product, often with unwanted quality deterioration as a result. The present results show that 355 

inhibitatory effect on Listeria spp. can be reached at much lower processing temperatures, at least for 356 

a refrigerated storage period of up to 24 days. SGS treatment of samples does not only benefit the 357 

high-temperature samples. Even when treated to 40 °C, introduction of SGS results in a prolonging of 358 

the lag phase of L. innocua (Table 3) from seeing significant count increase already between day 0 and 359 
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6, to a lag phase of more than 6 days. This leads to no significant difference at the end of storage 360 

between 50 °C treated samples packed using MA packaging and 40 °C treated samples packed using 361 

SGS (Figure 4). This highlights that SGS compared to MA packaging makes up for at least a 10 °C 362 

difference in core temperatures, when it comes to inhibition of Listeria, with potential organoleptic 363 

quality improvements as a result. The experiments were only performed under ideal storage 364 

conditions e.g. low storage temperature, elimination of cross contamination etc., thus the effect might 365 

be different in case of temperature abuse or deviating conditions. However, the comparison between 366 

MA packaging and SGS is believed to be true as tests are performed under the same condition.  367 

Similar positive results were seen for the natural samples. Unlike L. innocua inoculated samples, the 368 

bloating of the natural samples during heat treatment was not enough to influence the bacterial 369 

inhibition by heat (figure 5). A log reduction in CFU of 0.82, 1.17, 1.14 or 3.14 (MA-40°C, MA-50°C, SGS-370 

40°C or SGS-50°C, respectively) was obtained (p<0.003 for all groups). The difference in heat 371 

inactivation can be ascribed to the lower temperature tolerance of natural flora that mainly consists 372 

of LAB, as can be seen by the lack of significant differences between bacterial count for natural samples 373 

grown on either non-selective or selective LAB growth media (equivalent to Figure 5, with bacterial 374 

counts at day 24 for 40 °C core temperature samples: LI 5.8-5.98±0.35 log CFU x g-1 while MRS 5.33-375 

5.59±0.20 log CFU x g-1). This further explains why significant bacterial growth was only observed for 376 

samples heated to 40 °C, with the exception of growth on samples heated to 50 °C packed in MA.  377 

Comparing bacterial growth on samples heated to 40 °C packed using either MA or SGS showed no 378 

significant difference in bacterial count immediately after heat treatment. This was in spite of the raw 379 

material used for the SGS-treated samples showing a significantly higher bacterial count prior to heat 380 

treatment (p<0.001) (Figure 5). At the end of the storage period, no significant differences were 381 

observed between bacterial counts from samples packed in MA and SGS (p>0.545), however, at days 382 

6 till 17 MA packaged samples had significantly higher bacterial counts compared to SGS (p<0.029) 383 

(Figure 5). Manufacturers are not only interested in obtaining the longest possible period below the 384 

recommended maximum level of 106 CFU x g-1 (Health Protection Agency, 2009), but they are equally, 385 
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if not more, interested in prolonging the period with what is perceived as “good quality”, which is what 386 

SGS-treatment facilitates under the conditions of the present study (Figure 4 and Figure 5). Spoilage 387 

of MA packaged seafood has often been associated with the growth of LAB  which, due to its 388 

proteolytic abilities, can cause serious deterioration of the quality of the products, including increased 389 

drip loss and loosening of the texture (Gram & Huss, 1996). Reducing the growth of LAB therefor has 390 

the potential to significantly increase the quality of the product. The use of SGS packaging significantly 391 

lowered the maximum growth rate by half and increased the lag phase of the natural flora compared 392 

to that observed in MA packed samples (Table 3). The results indicate a potential inhibatory effect on 393 

the natural flora of salmon, as introduction of SGS in the current study compensates for a 10 °C 394 

reduction in processing temperature, as seen for the listeria inoculated samples. Further certainty 395 

regarding the effect on the natural flora, can only be achieved through further challenge testing, 396 

considering both strains and conditions.  397 

The non-pathogenic L. innocua has a high phenotypic similarity to L. monocytogenes and is often 398 

used as surrogate for L. monocytogenes. Both species share ecological niches (Hudecova, Buchtova, 399 

& Steinhauserova, 2010), show no differences in growth patterns (McLaughlin, Casey, Cotter, Gahan, 400 

& Hill, 2011), and no differences in response to the use of MA packaging (Hugas, Pagés, Garriga, & 401 

Monfort, 1998). On the other hand, L. innocua have been found to be more heat resistant than L. 402 

monocytogenes under certain conditions (Lorentzen, Ytterstad, Olsen, & Skjerdal, 2010). This makes 403 

L. innocua a suitable, yet more conservative, surrogate for studying effect of processing on L. 404 

monocytogenes under the conditions in present experiment (Hu & Gurtler, 017).  405 

4 Conclusion  406 

In conclusion, SGS has long been expected to have beneficial properties with regard to prolonging shelf 407 

life, however, the impact on chemical quality has been questioned. The present study underlines the 408 

microbiological benefits of CO2 in SGS by prolonging the lag phase of both Listeria innocua and the 409 

naturally occurring flora, slowing the growth rate, and even completely hindering the growth of L. 410 
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innocua for 24 days of storage as compared to MA packaging. Furthermore, no negative effect of SGS 411 

was observed for any of the chemical parameters tested, including WHC, drip loss, surface color, and 412 

texture. Consumers show an increased demand for lightly processed convenient seafood products. The 413 

present experiment has shown that it is possible to lower processing temperatures to a little as 40 or 414 

50 °C and still obtain an inhibitory effect on Listeria spp., one of the biggest risks regarding food safety, 415 

while improving chemical quality compared to traditional processing.   416 
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Table 1: Experimental design and response variables. 614 
MA=modified atmosphere, SGS=soluble gas stabilization 615 

Design variables Levels 
Core temperature 40, 50, or 60 °C 
Packaging method MA packaging or SGS 
Microbial community Natural or inoculated with Listeria innocua 
Storage time 0, 6, 10, 13, 17, or 24 days 
Response Variables Analyses 
Quality 
(only on natural samples) 

Color, composition, drip loss, headspace gas composition, 
metabolites of ATP, texture, water-holding capacity. 

Microbiological Aerobic plate count, H2S-reducing clostridium, Lactic acid 
bacteria, Listeria spp. 

Tested samples Raw, processed, stored  
n=4 for each group, at each sampling point 

 616 

 617 

 618 

 619 

 620 
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Table 2: Main effect of treatment temperature and packaging technology on drip loss, WHC, headspace CO2 concentration, 622 
and bacterial count of natural and inoculated samples. Key results are elaborated in Figure 4 and Figure 5 623 

  Drip loss 

[%] 
df=175 

WHC  
[%] 
df=54 

Head space 
CO2 [%] 
df=257 

Log CFU x g-1 
Inoculated 
df=141 

Log CFU x g-1 
Natural  
df=139 

Core temp 
 

40 7.4±2.2a 70.4±5.4a 50.6±7.4a 3.85±0.77a 3.97±1.4a 
50 8.9±1.3a 71.2±4.1a 49.8±6.3a 2.18±1.05b 0.90±1.2b 
60 7.4±1.4a 

p=0.065 
71.0±5.1a 

p=0.868 
49.7±6.7a 

p=0.635 
N.D. 
p<0.01 

N.D. 
p<0.01 

       
Packaging 
technology 

SGS 8.0±1.9a 72.0±5.6a 54.5±5.8a 2.26±2.01a 1.95±2.05b 
MA 7.8±1.9a 

p=0.329 
69.7±3.7a 

p=0.087 
45.4±4.2b 

p<0.01 
1.69±1.42a 

p=0.053 
1.17±1.87a 

p=0.020 
df = degrees of freedom 

N.D.=not detected. 

Superscript letters (a-c) indicates significantly mean value differences (p<0.05) according to one-way ANOVA 

 624 

  625 
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Table 3: Growth kinetic parameters (maximum specific growth rate (µmax, day-1) and lag phase (day) for samples subjected to 626 
different heat treatments (40 or 50 °C) and packaging technology (MA and SGS). Samples treated at 60 °C are not included 627 
due to lack of detectable growth. The parameters are estimated from the primary model of Baranyi and Roberts (1994) using 628 
log-transformed bacterial counts.   629 

Treatment  µmax [day-1] Lag phase [day] R2 SE(fit) 
Natural flora     

40°C – MA 0.48±0.08 2.8±1.4 0.929 0.515 

50°C – MA 0.2±0.05 3.1±2.0 0.827 0.827 

40°C – SGS 0.22±0.03 4.0±0.2 0.934 0.336 

50°C – SGS N/Aa N/Aa N/Aa N/Aa 

Inoculated flora     

40°C – MA 0.70±0.06 - 0.951 0.421 

50°C – MA 0.38±0.15 1.59±2.4 0.839 0.563 

40°C – SGS 0.06±0.03 6.48±0.1 0.643 0.233 

50°C – SGS 0.10±0.88 24.0±5.1 -0.0745 0.426 
R2, coefficient of determination, SE (fit), standard error of fit to the model, a not estimated due to no detectable growth during storage.     630 
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 632 

 633 

Figure 1: Schematic illustration showing the sampling of salmon portion after removal of backfin, belly flap, and tail.  634 
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 636 

Figure 2: Image of salmon samples immediate after heat treatment in temperatures of 45 (left), 55 (middle), or 65 °C (right). 637 

All samples are with no CO2 exposure prior to heat treatment (MA-samples).  638 
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 641 

 642 

Figure 3: Development of ATP-degradation products inosine monophosphate (IMP) (upper left), inosine (HxR) (upper right) 643 

and hypoxanthine (Hx) (lower left) during 24 days of storage, separated based on treatment temperatures and packaging 644 

technology applied. X = MA packaged samples, O = SGS treated samples, blue = 40 °C core temperature samples, green = 50 645 

°C core temperature samples, yellow = 60 °C core temperature samples. Error bars indicates mean ±1 standard deviation.  646 
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 648 

Figure 4: Growth of Listeria innocua on inoculated samples, separated based on heat treatment temperature and packaging 649 

technology applied. 60 °C samples, regardless of packaging technology, showed no growth at any point, and thus have been 650 

left out. Solid = MA packaged samples, striped = SGS treated samples, blue = 40 °C core temperature samples, green = 50 °C 651 

core temperature samples. Error bars indicates mean ±1 standard deviation.  652 
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 655 

 656 

 657 

Figure 5: Growth of microbial flora on natural samples, separated based on heat treatment temperature and packaging 658 

technology applied. 60 °C samples, regardless of packaging technology, showed no growth at any point, and thus have been 659 

left out. Solid = MA packaged samples, striped = SGS treated samples, blue = 40 °C core temperature samples, green = 50 °C 660 

core temperature samples. Error bars indicates ±1 standard deviation.  661 
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