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Abstract

Expectations of satiation and satiety have been increasingly investigated because of
the interest in how they, along with liking, can modulate portion-size selection.
Consumer characteristics can also be important when consumers select their portion
size. However, the contribution and interaction of consumers and product aspects to
portion size selection has not been unveiled. This study aims to better understanding
these complex relations by simultaneously assessing the relative influence of
consumer characteristics and product related properties on portion size selection

utilizing PLS-Path Modelling (PLS-PM) approach.

In this study, consumers (n=101) answered questions regarding attitudes to health and
hedonic characteristics of foods, and completed hunger and fullness questions. In an
evaluation step, they tasted eight samples of yogurt with different textures and rated
liking, expected satiation, expected satiety and portion size. The consumers were also

classified on their mouth behaviour by using the JBMB™ tool.

Results showed that liking, satiation, satiety and portion size depended firstly on the
thickness, and then on the particle size of samples. PLS-PM was used to generate a
model, indicating that liking was a direct predictor of portion size, with a stronger effect
than satiation or satiety. The relationship between liking and satiety was observed both
in direct direction (liking-satiety) and also indirect direction throughout satiation (liking-
satiation-satiety). The former was negative effect and the latter was positive effect

depending on the criteria which consumers used.

These findings implied that liking is a main factor in the prediction of portion size

however the relations are complex.



119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

33

34

35

Keywords: texture; viscosity; particle size; liking, satiation,; satiety; portion size; PLS

Path Modelling



178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

36

37

38

39

40

41

42

43

44

45

47

48

49

50

51

52

53

54

95

56

o7

58

59

1. Introduction

Satiation, satiety and consumers’ expectations

Until now, many studies of meal size have indicated that when deciding on a
particular portion size, our strategy may be guided by a concern to ensure that a portion
of food will deliver adequate satiety (Brunstrom & Shakeshaft, 2009). Satiety
comprises two processes: satiation (intra-meal satiety) and satiety (post-ingestive
satiety or inter-meal satiety). The former is defined as the process that leads to the
termination of eating; therefore, controls meal size. The latter is the process that leads
to inhibition of further eating, decline in hunger, increase in fullness after a meal is

finished (Blundell et al., 2010).

Satiation is measured through the measurement of ad libitum food consumption of
particular experimental foods (weight in grams or energy in kcal or kJ) under
standardized conditions. Satiety is usually measured using a preload-test meal
paradigm (Blundell et al., 2010). Expectations of satiation and satiety without
consuming a whole portion, but relying on a prospective portion size (de Graaf, Stafleu,
Staal, & Wijne, 1992; Fiszman & Tarrega, 2017), have been used to measure satiation

and satiety in many studies.

Brunstrom and colleagues have showed that people have very precise expectations
about satiety and satiation that foods are likely to confer (Brunstrom & Rogers, 2009;
Brunstrom & Shakeshaft, 2009; Brunstrom, Shakeshaft, & Scott-Samuel, 2008). In
general, expected satiety can be quantified by asking the participant to select the
amount that would be needed to stave off their hunger for a specific period of time,
whereas expected satiation can be quantified by selecting the amount that would be

required to feel full. Ideal portion-size can be assessed by asking the participant to
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select the amount that they would typically consume or the amount that they would like

to consume at that moment (Wilkinson et al., 2012).
Satiety-related perceptions and portion size selection

Two foods of equal nutrient content may have different effects on appetite. This is
because aspects of food consumption, other than the metabolic effects of nutrients in
the gastrointestinal tract, contribute to processes involved in appetite control
(Chambers, 2016). The ‘Satiety Cascade’ (Blundell et al., 2010) describes that both
expected satiation and satiety of foods rely on sensory attributes of foods. Among
sensory dimensions, texture imparts expectations of satiation and satiety clearer than
flavour does (Chambers, 2016; Hogenkamp, Stafleu, Mars, Brunstrom, & de Graaf,
2011). Food texture can influence at several levels. First, texture plays a critical role in
satiation or satiety through its effect on oro-sensory exposure. Due to their fluid nature,
liquid foods require less oral processing time than semi-solid and solid foods, leading
to reduction in oro-sensory exposure, which is important for the development of satiety
related perceptions (McCrickerd, Chambers, Brunstrom, & Yeomans, 2012; Tang,
Larsen, Ferguson, & James, 2017). More specifically, longer mastication duration and
higher intensity of sensory signals are also linked to higher satiation (Blundell et al.,
2010; Bolhuis, Lakemond, de Wijk, Luning, & Graaf, 2011). Second, from a cognitive
perspective, people may think solid foods are more satiating than liquid foods, i.e. solid
foods will contain more energy than liquid foods, without necessarily reflecting their

actual calories (de Graaf, 2012).
Palatability and portion size selection

In addition to the expectations of satiation and satiety, palatability of food is seen as
an important determinant of portion size selection. The role of palatability in prediction

of portion size, however, has been debated over different studies. Some studies

5
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indicated that reducing the palatability of our diet should result in reduced food
consumption (Yeomans, Blundell, & Leshem, 2004). Likewise, incremental increases
in palatability lead to short-term overconsumption; that is, we consume more of foods
that we like (Cooke & Wardle, 2005; Yeomans, 2007). Nevertheless, other studies
found that palatability was not associated with the selection of portions and then
rejected the hypothesis of these palatable foods tend to be selected in relatively larger
portions (Brunstrom & Rogers, 2009). Recently, the question whether “quality can
replace quantity” has been raised in some studies. It has been found that palatability
is unable by itself to predict people’s food behavior. Instead food reward, an immediate
sensation of wanting and liking a food when it is eaten and as a longer lasting feeling
of well-being after a meal, could be used to predict the behavior. Under the assumption
that well-tasting/high sensory quality foods provide more reward per energy unit than
bland foods, the hypothesis that ‘quality can replace quantity’ has been supported

(Mgller, 2015a, 2015b).

It is important to note that expected satiation, satiety and hedonic quality influence
each other and together they influence portion size. Nevertheless, the ways in how
these expectations are related are still unclear; while some studies showed that if
people eat a food they greatly enjoy, they will experience more pleasure, satiation and
satiety (Bobroff & Kissileff, 1986; Mattes & Vickers, 2018; Rogers & Schutz, 1992),
others observed that increased liking decreased feelings of satiety or satiation (Hill,

Magson, & Blundell, 1984; Holt, Delargy, Lawton, & Blundell, 1999).
Individual differences in consumer expectations

Individual differences should be considered when evaluating the relations between
these expectations. Individuals use different mechanisms for the oral breakdown of
food so that at any point, different groups of individuals would experience the samples

6
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differently (Brown & Braxton, 2000). The differences might have different impacts on
sensory perception, which in turn, would drive consumer expectations (i.e. liking,
expected satiation and satiety) (Jeltema, Beckley, & Vahalik, 2015, 2016). Individuals
have subjective experiences of satiety which are influenced more by what the person
saw and remembered, and less by what they actually ate (Brunstrom, 2014;
McCrickerd & Forde, 2016; Wilkinson & Brunstrom, 2009). These experiences should

be considered when determining the relations between consumer expectations.

The objective of this paper is to investigate and model from a holistic perspective
different aspects of consumer expectations (liking, satiation, satiety) using a PLS path
modelling approach. Our study differs from preceding studies in that we consider all
consumer expectations simultaneously in the prediction model. In addition, consumer
attitudes towards health and taste, experiences relevant for satiety and individual
differences were measured. Main attention will, however, here be given to the product

related measurements.

2. Materials and methods

2.1. Samples

Eight yoghurt samples were prepared from a design of experiment (DOE) based on
the same ingredients, only modifying the product texture by using different processing
strategies, so as the samples would have the same calories and composition and these
parameters would not influence satiety or satiation. The parameters of the DOE were:
viscosity (thin/thick), particle size (flake/flour) and flavour intensity (low/optimal); see
(Nguyen, Nees, & Varela, 2018) for details. Table 1 shows the samples with different

levels of viscosity, particle size and flavour intensity.

2.2. Consumer test
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One hundred and one consumers were recruited for the test in the southeast area
of Oslo from Nofima’s consumer database (73 females and 28 males, aged ranging
between 18 and 77). Participants were regular yoghurt consumers (at least once a
week). A recruitment questionnaire was used to collect general information (age,
gender, BMI, consumption and usage) and to select consumers based on consumption
frequency. Additionally, consumer attitudes were collected through the health and taste

questionnaire proposed by Roininen et al. (1999).

The formal assessment was performed in individual booths and had two parts. The
first part was about consumers characteristics: they answered items about hunger and
fullness question (Karalus & Vickers, 2016), and attitudes toward healthfulness of food
and toward taste (Roininen, Lahteenmaki, & Tuorila, 1999). The second part was about
product characteristics, consumers were asked to taste each sample and rate liking,
expected satiation, expected satiety, ideal portion-size, and to describe the samples
using Check All That Apply (CATA) questions (Adams, Williams, Lancaster, & Foley,
2007). During the CATA task, they were presented with the predefined list of attributes
and asked to indicate which words or phrases appropriately describe their experience
with the product being evaluated. The CATA question consisted of 22 sensory
attributes (Vanilla, Sour, Oat flavour, Sweet, Cloying, Bitter, Fresh, Unfresh, Thick,
Gritty, Sandy, Dry, Creamy, Mouth coating, Chewy, Sticky, Dense, Smooth,
Heterogeneous, Homogeneous, Liquid, Pieces) and 13 usage and attitude terms (Easy
to swallow, Difficult to swallow, High calorie, Low calorie, Satiating, Not satiating,
Appealing, Not appealing, Suitable for breakfast, Suitable for snack, Suitable for
supper, Fibrous, Healthy). The order of terms was randomized within the two groups

(sensory and usage), between products, and across assessors.
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Regarding the scales used for the consumer test, the consumers rated liking on a
Labelled Affective Magnitude (LAM) scale (Schutz & Cardello, 2001), expected
satiation on a Satiety Labeled Intensity Magnitude (SLIM) scale (Cardello, Schutz,
Lesher, & Merrill, 2005) and expected satiety on a 6-point scale from 1 = “hungry again
at once” to 6 = “full for five hours or longer”. For ideal portion-size, they chose the
extent to which they would consume as compared to the normal amount of commercial
yoghurt product. The portion-size scale, therefore, was one-third to 3-times compared
to normal amount. These variables from the first part will be called “consumer related
variables” throughout the paper, and those from second part as “product related

variables”.

Consumers were classified based on their mouth behaviour (MB) using the JBMB™
typing tool, which sorts people in four groups (Cruncher, Chewer, Sucker and
Smoosher). The tool had consumers classify themselves, by picking the group of
pictures and that was “most like them”. The descriptions, for example, “I like foods that
| can crunch” were followed by foods with textures that were easy to “crunch”. It is
similar to three remaining groups of Chewer, Sucker and Smoosher. The classification
on mouth actions of consumers is based on the fact that individuals have a preferred
way to manipulate food in their mouths: some consumers (Crunchers and Chewers)
like to use their teeth to break down foods; while Suckers and Smooshers, prefer to
manipulate food between the tongue and roof of the mouth. The difference within each
of the two groups lies in the hardness of preferred foods (Jeltema et al., 2015, 2016).
The classification of consumers in MB groups was used to investigate the effect of
different mouth behaviours on consumer expectations and prediction models in the

rest of this paper.
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All the sensory evaluations were conducted in standardized individual booths
according to (ISO 8589:2007). Samples were served in plastic containers coded with
3-digit random numbers and in a sequential monadic manner following a balanced
presentation order. Thirty grams of each yoghurt was served to each assessor for all

the evaluations.

2.3. Data analysis

2.3.1. Analysis of variance (ANOVA) on consumer expectations (liking, satiation,

satiety, portion)

Because each consumer would be assigned to only one MB group, consumer and
MB group were not crossed. Rather, consumer was nested within MB group. The
design was unbalanced as MB groups had different numbers of consumers. The
unbalanced nested ANOVA was carried out on the ratings, considering sample (fixed
effect), MB group (fixed effect), consumer nested within MB group (random effect) and

interactions of sample and MB group (fixed effect) as sources of variation.

2.3.2. PLS path modelling (PLS-PM)

Considering the framework of consumer expectations where liking, satiation and
satiety influence each other and together they influence portion size, we will in this
paper focus on a path modelling (PM) approach. In particular we chose to use PLS
path modelling due to its many good properties (see for instance (Tenenhaus, Vinzi,

Chatelin, & Lauro, 2005))

Providing details of the PLS-PM algorithm is beyond the scope of this paper, but

they are available from (Tenenhaus et al., 2005; Vinzi, Chin, Henseler, & Wang, 2010).

10
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As indicated in the introduction, main emphasis in the PLS-PM will be given to the
product variables, the main reasons being that the consumer variables generally had
a weak relation to product related measurements and that the relations were unstable
and therefore difficult to interpret when using a model reduction (see below). A brief

summary of the results will be given in the results section.

Because these blocks were rated on different scales, standardization between
blocks was applied by dividing each block according to the square root of the sum of

squares (Frobenius norm).

The procedure for handling data and obtaining model was illustrated in Fig. 1.

Organization of data

Since both consumer attitudes and demographics, as measured by a questionnaire,
as well as product related aspects such as liking and satiety were measured, a proper
organization of the data blocks was needed before submitting the data to analysis. This
challenge was discussed in depth by (Menichelli, Hersleth, AlImgy, & Naes, 2014). In
that paper, it was proposed to let the consumers represent the rows and the different
questionnaire questions and liking of the different products represent the columns, i.e.
each product has a separate column of liking values. In cases with very many products
it was proposed to represent the liking values for all products by a few principal
components only. We will here use this strategy for all product related blocks, i.e. liking,
satiation, satiety and portion. Fig. 2 displays how the data set was organized for

analyses.

Solving the one-dimensionality issue

11
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It is generally most appropriate to model sensory variables and also possibly
habits/attitudes variables as reflective blocks (Bollen & Lennox, 1991; Diamantopoulos
& Siguaw, 2006; Menichelli et al., 2014). As a reflective block, the manifest variables
(MVs) in the block are assumed to measure the same unique underlying concept
(Vinzi, Trinchera, & Amato, 2010). The full PLS-PM model requires in this case that all
blocks are uni-dimensional. Checking for uni-dimensionality with Cronbach’s alpha
requires the MVs to be positively correlated (Tenenhaus et al., 2005). For these
reasons, some MVs should be replaced by its opposite form. In the mental hunger
block, for example, the item “Rate your current feeling of fullness” indicated the
negative correlation with its own block. The solution to fix this problem was to change
the sign of this item so that instead of “feeling of fullness” it reflected “feeling of hunger”.
Similarly, for each block, the correlations of MVs and responding block were
considered, then the signs of MVs were changed if necessary before calculating

Cronbach’s alpha.

Data comprised different blocks; consumer characteristics: hunger and fullness,
attitudes toward healthfulness, attitudes toward taste; and product characteristics:
liking, expected satiation, expected satiety and portion-size selection. These blocks
should be divided into separate blocks with the goal of controlling the uni-

dimensionality issues (as required by PLS-PM).

For the hunger and fullness question, each factor (i.e. mental Hunger, mental
Fullness, physical Hunger, physical Fullness) measured only one aspect of hunger and
fullness feelings (Karalus & Vickers, 2016). Similarly, each factor in attitudes toward
healthfulness of foods, attitudes toward taste measured one aspect of consumer

attitudes (Roininen et al., 1999).

12
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PCA (Mardia, Kent, & Bibby, 1979) was applied to each product related block (i.e.
liking, satiation, satiety and portion) using double centered data, the scores and
loadings were computed. The rows now represent the consumers as described above.
For standard PCA of consumer data (i.e. in preference mapping studies), mean
centering for each consumer will usually be done, meaning that the additive differences
between consumers (i.e. different use of the scale) have been eliminated (T. Nees, P.
Brockhoff, & O. Tomic, 2010). Since each column is mean centered the standard way
in PLS-PM, this leads to double centered data (Menichelli et al., 2014), i.e. data is
mean centered across products and across consumers for each combination of sample
i and consumer j. By doing so, both the difference in level between the consumers and
the average differences between the products were eliminated. This means that the
PCA will focus on how the different consumer relate to the average consumer for each
product (Endrizzi, Gasperi, Radbotten, & Nees, 2014; Endrizzi, Menichelli, Johansen,
Olsen, & Nees, 2011). This approach is supported by the fact that for the PCA done
without double centering, the first component represented only different use of the

scale with all consumers lying on one side of the first component.

The PCA revealed that all product blocks were multi-dimensional. An approach
based on interpreting the principal components scores and using them as separate
blocks was then applied (see also Menichelli et al., 2014). Two components described
most of the interesting information for each data block. By doing so, instead of the eight
values responding to the eight samples for each consumer rating (i.e. liking, satiation,
satiety, portion size), the scores from two PCA components were used as input (in

separate blocks) to the prediction model for each block.

In order to examine the meanings of PCA dimensions, sensory attributes from CATA
questionnaire were treated as supplementary observations. This was achieved by

13
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projecting the frequencies of sensory attributes on the PCA space; that is, the factor
scores of the supplementary observations were not used to compute the principal

components (Abdi & Williams, 2010; T. Nees, P. B. Brockhoff, & O. Tomic, 2010).

The original blocks and separate blocks used in PLS path modelling are described

in Table 2.

The path model used

The path model given main attention in this paper is given in Fig. 3. The blocks were
introduced according to the theorized relation between them. The relationship between
liking and satiation, satiety as well as portion was established with respect to the
sequence of cognitive and physiological processes when people consume a food
product (Blundell et al., 2010). Based on that, liking was incorporated before satiation
(mostly influenced by sensory attributes) and satiety (imparted by sensory attributes,
cognitive, post-ingestive and post-absorptive). These expectations will be incorporated

into the framework to determine portion selection.

In the secondary path model comprising all blocks, all questionnaire variables were
used as input to the product related variables and the product related variables were
introduced according to the theorized relation between them as discussed above. The
consumer related variables (questionnaire) were assumed to influence consumer

expectations.

Simplifying the model

In order to simplify the path model, a reduction was tried by testing each of the links
by bootstrap based t-tests. Different sizes of p-values (0.1, 0.05 and 0.01) were tested

to validate the stability of the reduction.

14
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The models should be compared on criteria such as the strength of the relations
between variables as well as direct and indirect effects. By definition, the direct effect
was that influence of one variable on another that was unmediated by any other
variables in a path model; the indirect effects of a variable were mediated by at least
one intervening variable (Bollen, 1989; Kaplan, 2009). For the models, main emphasis
was given to two components in this case, but the third component was also given

some attention.

All data were collected with EyeQuestion (Logic8 BV, The Netherlands) and
analyses were carried out using R software (R Core Team, 2018). The packages p/spm
(Sanchez, Trinchera, & Russolillo, 2017) and semPLS (Monecke & Leisch, 2012) were

used for performing PLS path modelling.

3. Results

First of all, the results from the unbalanced nested ANOVA (Table 3) revealed that
while sample was significant for liking, satiation, satiety and portion, the MB group was

not significant at test level of 0.05.

However, it is important to see that the interaction product:MB was statistically
significant for satiation, while it was not for the rest of consumer expectations,
suggesting that mouth behavior plays a role in the expectations of satiation. The
interaction indicates that consumers rated the expected satiation of a product
depending on the MB group they belonged (Fig. 4). It is reasonable as chewers and
crunchers on one side and smooshers on the other, fall into two major modes of mouth
actions which seem to have separated people by their primary mouth behavior,
preferring to use their teeth to break down foods vs manipulating it between the tongue

and roof of the mouth respectively (Jeltema et al., 2015, 2016). In particular, chewers
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and crunchers differentiated between two groups of products: P2, P4, P6, P8 (thick
samples) in high satiation and P1, P3, P5, P7 (thin samples) expected as lower in
satiation. Smooshers however, tended to classify products into three groups in
descending order of satiation from P2, P4, P6, P8 (thick samples) and then
discriminating into two groups of these samples, depending on the particle size and
flavour level (PS5, P7 and then P1, P3). This may suggest that the managing of the
samples between the tongue and the upper palate could make them more aware of
the flavour and particle size as drivers of satiation in thinner samples. The implication

of MB in the model will be further commented in the discussion section.

3.1. PCA for individual product blocks

Fig. 5 points out that the samples were separated on the first PC space for liking (a)
and expected satiety (b). On the first dimension, samples were split into two groups
regarding to liking, with P1, P5, P7 in one group and P2, P4, P6, P8 in the other. Then
the second dimension separated samples into two groups, P3, P4, P7, P8 on the top
and P1, P2, P5, P6 at the bottom of the dimension. It can be noted that the same
structure was relevant for liking, satiation and portion (data not shown for these last
two), but not for satiety. In that case, the importance of the first two dimensions was
interchanged. The first dimension separated samples into two groups of P4, P7, P8
and P1, P2, P3, P5, P6 (Fig. 5b). To understand this, one could look at these results

together with the sensory attributes as described by consumer in the CATA question.

For liking (Fig. 6a), the first dimension was explained by viscosity with Thick and
Liquid attributes located in the opposite sides, whereas the second dimension was
characterized by the particle-size (Sandy and Pieces). Similarly, these

characterizations were observed for satiation and portion size. As described above, for
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satiety, the position of the two dimensions was switched, the first dimension became
the particle-size dimension and the second was the viscosity dimension (Fig. 6b).
These results are reasonable with regard to the design of experiment (viscosity,
particle-size and flavour intensity variables). More specifically, the samples P1, P3, P5,
P7 were designed as thin viscosity, the samples P2, P4, PG, P8 were thick in viscosity;
oat flour was added to the samples P3, P4, P7, P8 and oat flakes to the samples P1,

P2, P5, P6.

The third dimension was also taken into consideration. For liking and portion size, it
was described as the Sweet-Sour dimension, whereas for satiation and satiety, it was
the Sandy-Pieces dimension. The separation of sensory attributes was however not
relevant enough to have a clear interpretation or naming of the third dimension. From
these results, instead of eight ratings in response to eight samples, the three
dimensions, the so-called viscosity (V), particle-size (P) and the third dimension, will

be used for the analyses throughout the paper.

3.2. The prediction model

The model of product related variables only (prod model, 2 first PCA components)

To simplify the graphical interpretation task, and due to the excessive number of
variables in the data set, the focus will be on the block of product related variables. At
first, the full prod model was considered, and then the stability of model was
investigated by comparing some reduced models responding to different p-values (0.1,
0.05 and 0.01). Afterwards, the specific model should be chosen to explain the main

relations between variables.
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The relations between product variables in the full model were displayed in Fig. 7;
some relations were well defined, however, other relations with the path coefficients,
i.e. direct effects, were equal to zero and almost zero (LikingV-SatietyP, LikingV-
PortionP, SatiationP-PortionP and SatietyV-PortionV). These relations should be

eliminated from the model for obtaining the more stable models.

The validation of the model simplification pointed out that the main relations between
product related variables were stable with different p-values (0.1, 0.05, 0.01). In other
words, the reduced models had some slight changes, but the main trend was not
changed. The significant relations decreased in the reduced models with respect to p-
values. Comparing to the reduced models of p-value 0.1, in the reduced model of p-
value 0.05, the relations LikingV-SatiationP, LikingP-SatietyP, SatiationP-PortionV
were eliminated. In the light of this trend, in the reduced model of p-value 0.01, the
relations SatiationV-PortionP, LikingP-SatiationV, SatiationP-SatietyV continued to be
removed. Apart from LikingP-SatietyP, all eliminated relations did not display the
relations of consumer expectations on the specific dimension (viscosity or particle-
size). That is possible explanation why these relations were not stable with different p-

values.

In addition to the path coefficients, the explained variances of endogenous blocks
were considered (Table 4). It was not surprising that these blocks were explained
similarly for models with different p-values. Among those, PortionP was the most
explained block (R2: 0.48 - 0.50), whereas SatiationP was the least explained one (R2:
0.09 — 0.11). These results supported the above findings in which the product models

were stable with different p-values.
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Without loss of generality, the reduced model of p-value 0.1 was selected to account
for the relations between product variables. The path diagram was depicted in Fig. 8
and the direct/indirect effects were summarized in Table 5. In the model, liking had
positive and strong effects on portion with the path coefficients of 0.46 and 0.71 for
viscosity and particle-size dimensions, respectively. Accordingly, liking was a good
predictor for satiation and satiety. It is noteworthy that while liking directly influenced
satiation (LikingV-SatiationV: 0.30, LikingP-SatiationP: 0.37), it did not contribute
directly to satiety for each dimension. The effect liking-satiety was indirect through
satiation, that is, liking influenced satiation, which in turn, imparted satiety (LikingV-
SatiationV-SatietyV: 0.13, LikingP-SatiationP-SatietyP: 0.15). On this relation, it is
interesting to find that LikingV had indirect and positive effect on SatietyV, and on the
opposite side, LikingP had direct and negative effect on SatietyV (-0.29). To sum up,
the strongest indirect relation was the relation between liking and satiety; the direct
effects confirmed the strong relations of liking-portion, liking-satiation, satiation-satiety

and especially LikingP-SatietyV.

The model with three components

In this part, models were built taking into account three dimensions of viscosity,
particle-size and the third dimension. Then, the comparisons between the models with
different p-values. The results showed that the reduced model with p-value 0.05
seemed to be the optimal model because it kept enough information for interpretation
with less complexity. For viscosity and particle-size dimension, the relations were still
liking-portion and liking-satiation-satiety, for the third dimension, however, there were
some interactions. The third dimension seemed to be the mixture of viscosity and
particle-size dimensions; that is, it played the role of viscosity dimension in some

relations, and particle-size in other relations. Thus, including the third dimension in the
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model was not relevant for interpretation and more difficult to understand. These
results supported for the decision for which only two dimensions (i.e. viscosity and

particle-size) should be used in the model.

The model of consumer and product variables (con-prod model)

The relations in the con-prod model often followed the specific dimensions, i.e.
particle-size (P) and viscosity (V) dimension. In other words, the direct relations of
liking-portion and indirect relation of liking-satiation-satiety were relevant for each
dimension. The stability of this model was also investigated with different p-values. The
results (data not shown here) revealed that the relations between product variables
were stable and similar to the common pattern of the prod model described previously,
whereas those of consumer variables were quite sensitive with different p-values. In
order to eliminate some non-significant relationships and keep enough information for
interpretation, the p-value of 0.05 was chosen for the reduced model. In general lines,
hunger and fullness feelings as measured by the questionnaires influenced both liking
and satiation/satiety as measured for the products. Physical hunger had a negative
effect on liking; mental fullness negatively imparted satiation and positively imparted
satiety. For variables related to consumer attitudes towards healthfulness and taste of

food, they only influenced liking.

3.3. The influence of individual differences on the predicted model

The results of this part of the study looked into the effects of the variable eating-style
on the prediction model. Based on consumers’ mouth behaviors as classified with the
JBMB™ typing tool, consumers can be classified into four major groups, however, in
the present work consumers fell into three groups only: Chewer, Cruncher and

Smoosher, no Sucker was identified by the data. The path diagrams of these three
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groups are depicted in Fig. 9. Basically, a similar model was obtained in general lines
to predict portion for the three groups of consumers. Nevertheless, there was
noteworthy difference in LikingV-PortionV. While the relation was positive and strong
for Chewers (0.44) and Crunchers (0.65), it seemed to be weak, and if any, negative
(-0.11) for Smooshers. Particularly, Smooshers might use only particle-size for
predicting portion; as a strong relation LikingP-PortionP (0.68) was observed in Fig.
9c. The results are in agreement with previous studies (Jeltema et al., 2015, 2016),
stating that consumers used different strategies to manipulate foods and this
influenced their expectations. In this study, Chewers and Crunchers seemed to use
both two sensory dimensions (viscosity and particle-size) for estimating the Portion,

meanwhile Smooshers used particle-size only.

4. Discussion

4.1. The relation between liking and satiety

The prod model (Fig. 7) displays the general framework which describes the
relationships between consumer expectations. This model pointed out that an increase
in liking leads to an increase in prospective portion size (both when driven by particle
size or by viscosity). In addition, a higher liking could produce greater satiety as a
consequence of a greater satiation. It is compatible with the results of the previous
studies (De Graaf, De Jong, & Lambers, 1999; Johnson & Vickers, 1992; Yeomans,
1996). These authors studied the effect of liking on satiation, highlighting that the
absence of the effect of liking on subsequent satiety was clear. Note that the results
from the previous studies have been achieved in terms of direct relations only. In the
present study, both direct and indirect effects are interpreted. When the interactions

are included in the model, the interpretation becomes more complicated. Different

21



1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

dimensions of liking resulted in different effects on satiety; LikingP-SatietyV with
negative effect and LikingV-SaietyV with positive effect. Note that the latter is indirect
effect through SatiationV, which is obtained by multiplying the path coefficient of

LikingV on SatiationV with the path coefficient of SatiationV on SatietyV.

From the sensory perspective, sensory perception is not a single event but a
dynamic process with a series of events (Labbe, Schlich, Pineau, Gilbert, & Martin,
2009). The relation between these sensations and sensory-specific satiation/satiety
are not static during consumption (Karen, 2004; Morell, Fiszman, Varela, & Hernando,
2014). In a previous study done on the same yoghurt samples of the present study,
the product trajectories, highlighted by dynamic profiling via TCATA, pointed out the
common pattern in temporal profiles in which the samples were first separated by
viscosity and then by particle-size (Nguyen et al., 2018). This would support the
hypothesis of a sequential assessment of liking linked to the sequential perception from
viscosity (LikingV) to particle-size (LikingP). In other words, this would highlight the
temporal dimension of liking assessment, linked to the different stages of the dynamic

sensory perception of texture.

In the results, viscosity and particle-size have been interpreted as two orthogonal
dimensions on the PCA space (Fig. 6); however, from a perceptual point of view, these
properties can interact during the oral processing. Considering the rheology of a
suspension (as the yogurt model here), if the total mass of particles in a suspension is
kept constant but the particle size of the is reduced, then viscosity in the system would
increase (Hardacre, Lentle, Yap, & Monro, 2018; Mueller, Llewellin, & Mader, 2010;
Tarancén, Hernandez, Salvador, & Sanz, 2015). In the present study, a decrease in
particle size of the oat flakes would contribute to an increase in viscosity in the yoghurt

samples. For that reason, LikingP might play a role of “-LikingV”. In the prediction
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model, the relation of LikingV-SatietyV has a positive effect, meaning that, if consumers
like a sample with thick viscosity, they will perceive it as more satiating as well.
Consequently, LikingP has negative influence on SatietyV, as a yogurt with bigger

particles could be less viscous, and consequently perceived as less satiating.

In present years, many studies have investigated the role of viscosity and food
particles on expectations of satiation and satiety. These studies stated that both
viscosity and solid food particles have been reported as modulators of expectations
about satiety in which an increase in the perceived thickness was positively correlated
with the expected satiation, and more solid foods may evoke increased satiety
(Hogenkamp & Schiéth, 2013; Hogenkamp et al., 2011; Marcano, Morales, Vélez-Ruiz,
& Fiszman, 2015). The explanations based on the oro-sensory exposure; in particular,
higher viscosity in a food leads to longer oro-sensory stimulation (Mars, Hogenkamp,
Gosses, Stafleu, & De Graaf, 2009) and more solid products require more labor and
time in the mouth, causing longer oro-sensory exposure (Hogenkamp & Schitth,
2013). As a consequence, an increase in oral processing may result in higher satiety
(Forde, van Kuijk, Thaler, de Graaf, & Martin, 2013; Hogenkamp & Schitth, 2013). On
the contrary, Tarrega and colleagues have shown that a more viscous product base
increased the mean expected satiation regardless of the food particle added (Tarrega,
Marcano, & Fiszman, 2016). Unlike to those studies, the present study indicated that
while viscosity positively imparted satiety, food particle negatively influenced satiety;

that is, bigger particles lead to less satiating perception.

This result is not observed for SatietyP. The possible reason is that the “particle size
— viscosity” relation is only one direction from particle-size to viscosity, not in the
opposite direction. Apart from the viscosity effect of the reduced particle size, other

sensory perceptions related to the oral process might be affecting satiety perception in
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different directions. For example, the effect of the small particles might have in the
eating rate; having very small particles in the mouth can require longer work with the
tongue to being able to swallow the product. This sandy perception can in turn affect

liking in different ways, depending on the preferences and mouth behaviour.

4.2. The relation between consumer characteristics and consumer expectations

Focusing on expected satiety, higher mental fullness (mFull) scores predicted larger
decreases in viscosity related satiation (SatiationV). The finding is in accordance with
Mattes and colleagues, pointing out that a higher expected satiety led to decrease in
hunger and increase in fullness immediately after consuming the food (Mattes &
Vickers, 2018). As opposed to satiety, mental fullness (mFull) had negative effect on
satiation (mFull scores predicted larger increases in viscosity related satiety -
SatietyV), meaning that the feeling of mental fullness might reduce consumers’

satiation.

While mental fullness significantly influenced satiation and satiety expectation,
physical hunger (pHunger) influenced liking; in particular, liking related to viscosity
(LikingV). When consumers rated a higher physical hunger, they tended to dislike
yogurts that were thicker. However, pHunger was not the only predictor, craving and
reward also contributed to the changes of LikingV. The strengths of these relations
(craving-LikingV, reward-LikingV) are similar and positive. That suggests that liking
should be considered as complex concept which is imparted by several factors, at least
in the present study, such as hunger and fullness feelings and attitudes to healthiness,

and taste of foods.

4.3. Determining number of components
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In order to maintain the uni-dimentionality of data blocks in the PLS-PM approach,
PCA was applied on each data block and then only the first two components are
selected for subsequent analyses. In the present study, the selection was not very
difficult due to the fact that the samples have been formulated from a design of
experiment of viscosity, particle-size and flavour intensity variables. However, when
more complex samples with a wide range of sensory perceptions were used, the
selection of the number of dimensions in the model could be indeed a difficult task in
itself. This problem could be solved with some other approaches such as SO-PLS path
modelling (Naes, Tomic, Mevik, & Martens, 2011) or Path-ComDim (Cariou, Qannari,
Rutledge, & Vigneau, 2018). These approaches can be used for any dimensionality of
the blocks of variables. Research work is needed to further compare these approaches

to deeper understand advantages and limitations.

5. Conclusions

This paper has shed some light on the question of whether “quality can replace
quantity” although the answer is not straightforward. With the model obtained by PLS-
PM, liking played an important role in predicting portion selection. More specifically, a
higher liking meant a bigger portion selection for the semisolid system under study.
Besides that, satiation and satiety could be predicted from liking directly and indirectly,
the understanding of the implications, however, needs to be considered carefully due

to the dynamic and multiparametric nature of these expectations.

The present study suggests that PLS-PM could be an appropriate tool to explain the
relationships between consumer attitudes, product assessment and expectations. In
this case study, consumer expectations of liking, satiation, satiety, and prospective

portion were clearly two dimensional and it has been shown how it can be interpreted.
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But when the sensory dimensions underlying those expectations become more
complex, resulting in more dimensions, the interpretation of consumer expectations

within such a complex model might not be obtained easily and explicitly.
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Table 1. Formulation of the yoghurt samples.

Sample Viscosity Particle size Flavour intensity
P1 (t-F-I) Thin Flakes Low
P2 (T-F-I) Thick Flakes Low
P3 (t-f-1) Thin Flour Low
P4 (T-f-I) Thick Flour Low
P5 (t-F-0) Thin Flakes Optimal
P6 (T-F-o0) Thick Flakes Optimal
P7 (t-f-o) Thin Flour Optimal
P8 (T-f-0) Thick Flour Optimal
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Table 2. The blocks used in the prediction model.

Original block Block in PLS-PM model  Abbreviation of block
Hunger and fullness Mental hunger mHunger
Mental fullness mFull
Physical hunger pHunger
Physical fullness pFull
Attitudes toward healthfulness  General health interest general
Light product interest light
Natural product interest natural
Attitudes toward taste Craving for sweet food craving
Using food as a reward reward
Pleasure pleasure
Liking Liking for dimension V LikingV
Liking for dimension P LikingP
Expected satiation Satiation for dimension V  SatiationV
Satiation for dimension P SatiationP
Expected satiety Satiety for dimension V SatietyV
Satiety for dimension P SatietyP
Ideal portion-size Portion for dimension V PortionV
Portion for dimension P PortionP

32



1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947

757

758
759

Table 3. ANOVA results (p-values) for each consumer expectation.

Liking Satiation Satiety Portion
product < 0.001 < 0.001 < 0.001 < 0.001
MB 0.604 0.969 0.269 0.184
product:MB 0.412 0.008 0.996 0.882
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Table 4. R2 of product models with different p-values.

Model full Model pval-0.17  Model pval-0.05 Model pval-0.01
SatiationV 0.11 0.11 0.11 0.09
SatiationP 0.15 0.15 0.14 0.14
SatietyV 0.26 0.25 0.25 0.23
SatietyP 0.32 0.32 0.30 0.30
PortionV 0.23 0.22 0.22 0.22
PortionP 0.50 0.50 0.50 0.48
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Table 5. Direct and indirect effects of reduced model of p-value 0.1.

Relationships

Direct effect

Indirect effect

LikingP - SatietyV
LikingP - SatiationV
LikingV - SatietyP
LikingV - SatietyV
LikingV - PortionP
LikingP - PortionV
SatiationP - PortionV
LikingV - SatiationP
SatiationV - PortionP
LikingP - SatietyP
SatiationP - SatietyV
SatiationV - SatietyP
LikingV - SatiationV
LikingP - SatiationP
SatiationV - SatietyV
LikingV - PortionV
SatiationP - SatietyP
LikingP - PortionP

-0.29
-0.14
0.00
0.00
0.00
0.00
0.07
0.12
0.12
0.13
0.16
0.18
0.30
0.37
0.38
0.46
0.48
0.71

0.01
0.00
0.11
0.13
0.04
0.03
0.00
0.00
0.00
0.15
0.00
0.00
0.00
0.00
0.00
0.01
0.00
-0.02
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Figure Captions
Fig. 1. Schematic diagram of data handling and model selection.
Fig. 2. Different types of data sets and their relations.

The first data set consists of consumer characteristics for each consumer, related to
hunger and fullness feelings, attitudes toward healthfulness, taste of foods;

The second data set comprises eight ratings (responding to eight products) for each
expectation (liking, satiation, satiety, portion) for each consumer. Specifically, there are
four data blocks and each of the block includes eight columns with the ratings of the
eight products.

Fig. 3. Path model of product related variables (prod model).

V and P were the notation of viscosity and particle-size dimension, respectively.

Fig. 4. Interaction plot (product:MB) for expected satiation.

Fig. 5. PCA on double-centered data for Liking (a); Expected satiety (b).

Fig. 6. CATA attributes profiled in the PCA space for Liking (a); Expected satiety (b).
Fig. 7. Path diagram for the full prod model.

The ‘blue’ lines stood for the positive relations, the ‘red’ lines dedicated for negative
relations, the thickness of the lines indicated the strengths of the relations and the
numeric values together lines as the path coefficients (direct effects) between
variables.

V and P were the notation of viscosity and particle-size dimension, respectively.
Fig. 8. Path diagram for the reduced prod model with p-values of 0.1.

Fig. 9. The path diagram for consumer-product model with p-value of 0.05 for Chewers
(a), Crunchers (b) and Smooshers (c).
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