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Near Infrared Hyperspectral Imaging of Fusarium- Damaged Oats (Avena sativa L.) 1 

Selamawit Tekle1,2, Ingrid Måge3, Vegard H. Segtnan3, Åsmund Bjørnstad1 
2 

ABSTRACT 3 

The feasibility of hyperspectral imaging (HSI) to detect deoxynivalenol (DON) content 4 

and Fusarium damage in single oat kernels was investigated. Hyperspectral images of oat kernels 5 

from a Fusarium-inoculated nursery were used after visual classification as asymptomatic, mildly 6 

damaged, and severely damaged. Uninoculated kernels were included as controls. The average 7 

spectrum from each kernel was paired with the reference DON value for the same kernel and a 8 

calibration model was fitted by partial least squares regression (PLSR). To correct for the skewed 9 

distribution of DON values and avoid nonlinearities in the model, the DON values were 10 

transformed as DON*= [log(DON)]^3. The model was optimized by cross-validation, and its 11 

prediction performance was validated by predicting DON* values for a separate set of validation 12 

kernels. The PLSR model and linear discriminant analysis (LDA) classification were further used 13 

on single-pixel spectra to investigate the spatial distribution of infection in the kernels. There were 14 

clear differences between the kernel classes. The first component separated the 15 

uninoculated/asymptomatic from the severely damaged kernels. Infected kernels showed higher 16 

intensities at 1920, 2070 and 2140 nm, while non-infected kernels were dominated by signals at 17 

1420, 1620 and 1850 nm. The DON* value of the validation kernels were estimated using their 18 

average spectrum, and the correlation (R) between predicted and measured DON* was 0.8.  Our 19 
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results show that HSI has great potential in detecting Fusarium damage and predicting DON in 20 

oats but it needs more work to develop a model for routine application. 21 

Abbreviations 22 

DON: Deoxynivalenol, FHB: Fusarium Head Blight, HSI: Hyperspectral Imaging, LDA: Linear 23 

Discriminant Analysis, NIR: Near Infrared, PCA: Principal Component Analysis, PLSR: Partial 24 

Least Squares Regression, VIS: Visible. 25 
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INTRODUCTION 1 

Fusarium head blight (FHB) is one of the important diseases of cereals worldwide. The 2 

disease causes substantial yield and quality losses every year (Parry et al., 1995, McMullen et al., 3 

1997). It results in light-weighted shriveled kernels with pink to brownish discoloration 4 

(McMullen et al., 1997). Fusarium spp. produce a wide array of toxins (Bottalico & Perrone, 2002) 5 

which are involved in isolate aggressiveness and species pathogenicity (Langevin et al., 2004). 6 

These toxins raise food and feed safety issues and impair animal production as they cause feed 7 

refusal, vomiting, and reduced weight gain in farm animals. They are also associated with various 8 

acute and chronic ailments in animals and humans (Bergsjø et al., 1993, D’Mello et al., 1999). 9 

Deoxynivalenol (DON) and its derivatives, mainly produced by F. graminearum and F. culmorum, 10 

are the most commonly encountered Fusarium-toxins in Europe (Bottalico & Perrone, 2002) and 11 

in Norwegian  small grain cereals (Bernhoft et al., 2013). Among the small grain cereals produced 12 

in Norway, oats (Avena sativa L.) are the most frequently and highly DON-contaminated cereal 13 

species (Bernhoft et al., 2013).  14 

Fusarium infection has a significant impact on grain quality.  Fusarium graminearum 15 

infection in barley (Hordeum vulgare L.) results in significant reduction in germination and kernel 16 

plumpness (Schwarz et al., 2001). In wheat (Triticum aestivum L.), infection results in poor baking 17 

performance and flour color, reduced loaf volume, and weak dough properties (Dexter et al., 1996, 18 

Nightingale et al., 1999, Wang et al., 2005). Infection destroys starch granules, storage proteins, 19 

and cell walls (Bechtel et al., 1985, Wang et al., 2005). Wheat kernels infected with F. culmorum 20 

display damaged starch granules, complete or partial lack of the protein matrix and complete 21 

disappearance of the starchy endosperm under severe infection (Jackowiak et al., 2005). 22 
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Significant degradation of the endosperm protein and lower content of storage proteins in F. 23 

avenaceum and F. graminearum- infected wheat  are also reported (Nightingale et al., 1999).  24 

The level of fungal secondary metabolites in grains (such as DON) is very low compared 25 

to the major seed constituents. Conventional NIR spectroscopy is not very sensitive to such minor 26 

constituents (Gowen et al., 2007). Therefore, efforts to calibrate DON contamination in bulk 27 

samples using NIR spectroscopy must rely on major effects of the disease on grain constituents 28 

that are correlated with DON (Siuda et al., 2008, Tekle et al., 2013). Hyperspectral imaging (HSI) 29 

is a powerful non-destructive tool to detect contaminants in food and feed(Gowen et al., 2007, 30 

Feng & Sun, 2012). It has higher sensitivity to minor seed constituents than conventional NIR 31 

spectroscopy (Gowen et al., 2007) due to the local enhancement of constituent signals. It combines 32 

conventional imaging and spectroscopy to provide a three-way data matrix known as a hypercube 33 

made of two spatial (x, y) and one wavelength (z) dimensions. It is made of hundreds of single 34 

channel, grayscale images, each representing a single band of spectral wavelength (Gowen et al., 35 

2007). This combination of spatial and spectral information enables building ‘chemical maps’ that 36 

show distribution of grain components in individual kernels (Feng & Sun, 2012, Williams et al., 37 

2010). Powerful and efficient data processing methods, however, are required to extract useful 38 

information from such hyperspectral data (Feng & Sun, 2012).  39 

Hyperspectral imaging has previously been used to classify kernels and kernel regions 40 

based on fungal damage and/ or DON contamination (Gowen et al., 2007, Polder et al., 2005, 41 

Williams et al., 2010). The technique has been adapted for detection of maize kernels and regions 42 

within each kernel that were infected by F. verticillioides  (Williams et al., 2010). Others have 43 

used HSI to detect Fusarium damage in wheat (Delwiche et al., 2011, Shahin & Symons, 2011, 44 

Shahin & Symons, 2012).  Visible-NIR HSI classified wheat kernels into sound and Fusarium-45 
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damaged with an accuracy of 92% (Shahin & Symons, 2011). It was possible to further classify 46 

the Fusarium-damaged kernels as severely and mildly damaged with an accuracy of 86 %. Similar 47 

levels of accuracies were achieved by using only six selected wavelengths (484 nm, 567 nm, 684 48 

nm, 817 nm, and 900 nm), (Shahin & Symons, 2011). An extended VIS-NIR (400-1000 /1000-49 

1700) HSI was shown to discriminate between Fusarium-damaged and sound wheat kernels with 50 

an average accuracy of 95%. The spectral absorption near 1200 nm, which was tentatively 51 

attributed to ergosterol was found to be useful for classification (Delwiche et al., 2011).  52 

The level of Fusarium damage and DON contamination varies widely within and among 53 

kernels in a given Fusarium-affected seed lot (Liu et al., 1997). We hypothesized that 54 

hyperspectral imaging could utilize this variation to develop a robust NIR calibration model and 55 

map the variation in individual kernels. The objectives of this experiment were i) to test the 56 

feasibility of hyperspectral imaging in classifying oat kernels based on Fusarium damage and  57 

DON level ii) to map DON contamination in single oat kernels, and  iii) to develop a calibration 58 

model that integrates both Fusarium damage and DON contamination.  59 

MATERIALS AND METHODS 60 

Samples 61 

A half kilogram sample of the oat cultivar ‘Bessin’ was obtained from a Fusarium 62 

inoculation trial conducted in 2012 at the Vollebekk Research Farm of the Norwegian University 63 

of Life Sciences. The bulk sample had a DON value of 6.8 ppm. Kernels were visually categorized 64 

as severely damaged (highly shriveled, light weighted kernels with brownish discoloration and 65 

pinkish-white mycelium on most of the kernel surface), mildly damaged (kernels with modest 66 

kernel fill and localized brownish discoloration and pinkish-white mycelium), and asymptomatic 67 
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(well filled kernels with no visible discoloration or mycelium). Clean seeds of the same cultivar 68 

from an uninoculated nursery were used as control. The kernels were assigned randomly to the 69 

calibration set (n= 4 categories x 31 kernels) or the validation set (n= 4 categories x 14 kernels) 70 

and for scanning microscopy (n= 4 categories x 10 kernels). 71 

Hyperspectral imaging  72 

Hyperspectral images were acquired using SWIR hyperspectral camera (Specim, Spectral 73 

Imaging Inc, Oulu, Finland) with a Mercury Cadmium Telluride (HgCdTe) detector. SpectralDAQ 74 

(Specim, Spectral Imaging Inc, Oulu, Finland) was used for image acquisition software. The 75 

images were obtained in the 1000-2500 nm wavelength range distributed in 256 channels. The 76 

images had a spatial resolution of 200µm. Image acquisition was set at 5 mm/s scanning speed, 77 

5ms exposure time and a frame rate of 25HZ. The ventral and dorsal surfaces of 31 kernels 78 

representing the calibration set of each kernel category were scanned following the sample 79 

presentation shown in Figure 1A. The same was done on 14 kernels from each kernel category 80 

representing the validation set following the sample presentation shown in Figure 1B. 81 

Hyperspectral images of kernels comprising seven uninoculated, seven asymptomatic, seven 82 

mildly damaged and ten severely damaged kernels were taken following the sample presentation 83 

shown in Figure 5A.   Kernels were directly placed on the black sample holder and a 99% reflecting 84 

white reference bar was included in each image. 85 

Figure 1 comes here. 86 

Analysis of hyperspectral images 87 

All data analysis was done in MATLAB (Release 2013b, The MathWorks, Inc., Natick, 88 

Massachusetts), using the Image Processing Toolbox, Statistics toolbox and in-house routines for 89 
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Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR). The analysis 90 

of the images followed these steps: 91 

1. Transformation of raw signal into percent reflectance 92 

Every image contains a white and black reference, as shown in Figure 1. The reflectance spectrum 93 

Rrc in row r and column c was calculated as 94 

cblackcwhite

cblackrcraw

rc
II

II
R

,,

,,

−
−

= , 95 

where Iraw,rc is the raw signal of row r and column c, and Iblack,c and Iwhite,c were the average black 96 

and white references of column c. By doing the calculations column wise, variations due to line 97 

scanning were accounted for. 98 

2. Remove background 99 

In order to separate kernels from background, a threshold rule based on differences in reflectance 100 

spectra was used. The threshold was set by visual inspection of the spectra.  101 

3. Preprocess spectra 102 

Reflectance spectra were transformed to absorbance, and normalized by standard normal variate 103 

(SNV) to remove scattering effects. 104 

4. Multivariate data analysis based on average spectra for each kernel 105 

The average spectrum from each kernel was paired with the reference DON value, and a calibration 106 

model based on 248 images ((4 ventral + 4 dorsal images) x 31 kernels representing each kernel 107 
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category) was fitted by PLS regression. The DON values were transformed as    DON*= 108 

[log(DON)]^3 prior to analysis in order to obtain a more even distribution and avoid curvature in 109 

the prediction model. The model was optimized by full cross-validation, and the prediction 110 

performance was validated by predicting DON* values of 112 separate validation kernels ((4 111 

ventral + 4 dorsal images) x 14 kernels representing each kernel category). 112 

A linear discriminant analysis (LDA) classification model was built using the latent variables from 113 

the PLS model. Only uninoculated and severely damaged kernels were used to define the 114 

classification rule, in order to get a clear separation between infected and non-infected samples.  115 

5. Application of pixel-level multivariate models  116 

The PLSR model and LDA classification were used on single-pixel spectra to investigate the 117 

spatial distribution of Fusarium infection within the kernels. 118 

Microscopy and DON analysis 119 

Cross-sections and surfaces of hulled and dehulled kernels representing each kernel 120 

category were further studied under the scanning electron microscope, SEM (ZEISS EVO 50-EP 121 

Environmental Scanning Electron Microscope, Carl Zeiss AG, Germany) at the Imaging Centre of 122 

the Norwegian University of Life Sciences. Ten kernels representing each kernel category were 123 

used. Samples were dissected in the middle and near the embryo to study the effect of infection on 124 

the grain ultra structure. The samples were mounted on aluminum stubs with conductive carbon 125 

adhesive tabs and double coated with gold-palladium (SC7640 Auto/ manual high resolution 126 

sputter coater) before examination under the SEM operating at an accelerating voltage of 25 kV.  127 
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Kernels used in the hyperspectral imaging were sent to the University of Minnesota, 128 

Department of Plant Pathology for single-kernel DON analyses.  Deoxynivalenol content was 129 

determined by gas chromatography coupled with mass spectrometry following the protocol 130 

described in Jiang et al. (2006). The weight of each kernel was documented prior to grinding and 131 

DON analysis. 132 

RESULTS AND DISCUSSIONS 133 

Microscopy, DON content and kernel weight 134 

Fusarium infection results in shriveled and light weighted kernels contaminated with DON 135 

(Snijders & Perkowski, 1990, Parry et al., 1995). Visual symptoms generally correlate with the 136 

level of DON contamination, but asymptomatic kernels can also be contaminated with significant 137 

levels of toxins. Therefore, accuracy of visual assessment of Fusarium damage is limited, and 138 

integrating DON analysis with visual assessment is a more robust way of evaluating the disease.  139 

Our results show that deoxynivalenol content and kernel weight of the visually categorized kernels 140 

followed the expected general trend. The asymptomatic kernels had the highest mean kernel 141 

weight and the lowest mean DON content while the severely damaged kernels had the lowest mean 142 

kernel weight and the highest DON content. The mildly damaged kernels had DON content and 143 

kernel weight values between the asymptomatic and the severely damaged ones (Table 1). 144 

However, there were a few exceptions to this general trend. There were kernels with very low 145 

DON (0.48 ppm, for example) in the severely damaged kernels category while there were kernels 146 

in the asymptomatic kernels category with substantial DON (21.91 ppm, for example). These 147 

kernels were detected with a better accuracy using HSI than our visual inspection. 148 

Table 1 comes here 149 
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The microscopic study showed that the uninoculated and the asymptomatic kernels to be 150 

plump and free of any fungal mycelia. The severely damaged kernels were shriveled and heavily 151 

colonized with F. graminearum. Dense mycelial growth on the hulls and on the caryopsis of the 152 

severely damaged kernels was frequently observed. Denser mycelia were observed near the crease 153 

of the severely damaged kernels (Figures. 2 and 3). The cross-sections of the uninoculated kernels 154 

revealed a well-formed aleurone layer and intact endosperm, while the severely damaged kernels 155 

had collapsed and highly colonized aleurone layer with partially digested endosperm structure 156 

(Figures 3 and 4). Damage to the seed coat and the aleurone layers were also observed in the mildly 157 

damaged kernels, but the inner endosperm structure was intact. Similar effects of infection were 158 

observed in wheat (Bechtel et al., 1985, Jackowiak et al., 2005). Hyphae of F. culmorum were 159 

most prevalent in the layers of the seed coat tissues but were much less prevalent in the endosperm 160 

tissues of damaged wheat kernels (Jackowiak et al., 2005). Another study reported the pericarp 161 

and the aleurone layer to be the most affected tissues in F. graminearum infected wheat (Bechtel 162 

et al., 1985).  163 

Figure 2, 3 and 4 come here 164 

Hyperspectral image analysis 165 

The level and the range of DON contamination in ground bulk samples do not correspond 166 

to that of individual kernels. In this study, the bulk DON content of the sample used was 6.8 ppm 167 

while the DON level of the individual kernels ranged from non-detectable levels to 386.5 ppm 168 

(Table 1). In a previous study, we investigated the potential of conventional VIS-NIR spectroscopy 169 

to estimate DON content of Fusarium-inoculated oat genotypes. Spectra were taken and DON 170 

level was analyzed from bulk ground samples. One hundred sixty six samples with DON value 171 

ranging from 0.05 ppm to 28.1 ppm were used. It was possible to develop a calibration model 172 
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which can be used for rough screening of the genotypes (Tekle et al., 2013). However, we 173 

hypothesized that a better calibration model for DON and Fusarium damage could be developed 174 

if the wider variation in DON among individual kernels and the higher sensitivity of HSI were 175 

utilized.  176 

The average kernel size across all images was 554 pixels, ranging from 345 to 567 pixels. 177 

The correlation between the number of pixels and the measured kernel weight was 0.72, showing 178 

that the pixel size is fairly representative for the actual size of the kernels. The PLSR model, using 179 

the average spectra and the DON* values as x and y variables, respectively, was optimized by full 180 

cross-validation, and a 5-component model was selected. The model had a R2 of 0.75 and 0.71 for 181 

calibration and cross-validation, respectively. The model was able to describe the majority of the 182 

DON* variation, although the prediction was not very good. The first PLS component was the 183 

most dominant, describing 32.9% of the DON* variation and 70.5% of the spectral variation. The 184 

second PLS component described additional 8.2% of the DON* variation and 14.2% of the spectral 185 

variation. The PLS score plot of component 1 versus component 2 in Figure 5A shows that there 186 

is a systematic pattern due to kernel category. These first two components separate uninoculated 187 

and asymptomatic kernels from severely damaged kernels. The mildly damaged kernels are 188 

overlapping with the severely damaged and the asymptomatic kernels. This can be explained by 189 

the large variation in DON value of the mildly damaged kernels (Table 1).  190 

The line in Figure 5A is the LDA discrimination line that separates uninoculated kernels 191 

from severely damaged kernels. This line is used to discriminate between non-infected and 192 

infected pixels in the validation images. The loadings for the first component are shown in Figure 193 

5B. The main peaks representing positive changes associated with increased infection are seen at 194 

1925 nm, 2070 nm and 2140 nm, while negative changes at 1400 nm, 1626 nm and 1850 nm 195 
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corresponded to non-infection.  In a previous study, peaks centered at 1432 and 1924 nm classified 196 

DON-contaminated samples into high-DON and low-DON classes. These peaks were attributed 197 

to O-H bands of water (Tekle et al., 2013).  In comparison, absorbance peaks for F. verticillioides-198 

infected maize kernels were observed at 1960 nm and 2100 nm and at 1450 nm 2300 nm and 2350 199 

nm for non-infected kernels (Williams et al., 2010). 200 

Figure 5 comes here 201 

Figure 6 shows the image analysis performed on the mixed calibration set kernels. The 202 

mixed calibration set kernels were comprised of seven uninoculated, seven asymptomatic, seven 203 

mildly damaged and ten severely damaged kernels arranged randomly as shown in Figure 6A. The 204 

reflectance image of a selected channel of these kernels is shown in Figure 6B. The background 205 

noise was removed by using the mask shown in Figure 6C.  Fusarium-damaged/ DON 206 

contaminated regions (depicted by red pixels) and healthy/ DON free regions (depicted by green 207 

pixels) of each kernel were predicted using   PLSR and LDA (Figure 6D). The severely damaged 208 

kernels were dominated by red pixels while the uninoculated and asymptomatic kernels were 209 

dominated by green pixels showing that HSI can successfully detect level of Fusarium-damage. 210 

This observation is clearly shown by the differences in the mean percentage of damaged pixels in 211 

the calibration images of each kernel category (Table 2).  212 

Figure 6 comes here.  213 

Figure 7 shows the PLS-LDA classification model used for classification of individual 214 

pixels in the eight validation images. There was a clear difference between classes, as indicated by 215 

the extent of red and green pixels and by the differences among the mean percentage of damaged 216 

pixels in the validation images of each kernel category. (Figure 7 and Table 2). Hyperspectral 217 
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imaging detected Fusarium damage and DON level more precisely than visual examination. 218 

Kernels with very high DON but categorized as mildly damaged were dominated by infected 219 

regions. On the other hand, kernels with very low DON but categorized as severely damaged were 220 

dominated by healthy regions after image analysis (Figure 7). 221 

Figure 7 comes here. 222 

Table 2 comes here. 223 

The DON* value for the 112 validation set kernels ((4 dorsal + 4 ventral images) x 14 224 

kernels representing each kernel category) were predicted in two alternative ways: 1) using the 225 

average spectrum of the kernels as x-variables and the PLSR model, and 2) classifying every pixel 226 

using the PLS-LDA model, and calculating the ratio of damaged pixels in each grain. . The 227 

correlation (R) between predicted and measured DON* values were 0.81 and 0.79 respectively 228 

(Figure 8). The difference between the two prediction methods is not statistically significant, 229 

showing that they are equivalent. Both methods indicate a valid model showing a good potential 230 

of HSI in detecting Fusarium damage and predicting DON in oats.  231 

Figure 8 comes here. 232 

CONCLUSIONS 233 

Hyperspectral images of individual oat kernels with different levels of Fusarium damage 234 

and DON content were analysed. Hyperspectral imaging successfully detected Fusarium damage 235 

of kernels with better accuracy than visual inspection. Detection of Fusarium damage with HSI 236 

gave a better indication of DON content of kernels than visual assessment of damage. Regions 237 

within single kernels were further classified as Fusarium-damaged and healthy regions. A PLSR 238 
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model was developed using the transformed DON* values as y-variables and the average spectra 239 

of each kernel as x-variables. The model was proved to be valid and stable by detecting DON* 240 

values of a set of separate validation kernels. The results reported in this paper indicate that HSI 241 

can successfully be implemented to detect Fusarium damage and DON contamination in single 242 

oat kernels. Thus, highly damaged and contaminated kernels can be detected and removed to 243 

significantly lower toxin contamination and improve grain quality of seed lots. Kernels used in 244 

this paper are of a single oat genotype originating from a single experimental year. Testing the 245 

feasibility of HSI to detect Fusarium damage and DON contamination in several genotypes across 246 

experimental years would be an important step towards the routine application of the method for 247 

screening purposes. 248 
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Table 1: Mean (± standard deviation), minimum and maximum kernel weight (g) and 322 

deoxynivalenol content (ppm) of calibration (n=31) and validation (n=14) set samples of 323 

asymptomatic (A), mildly damaged (MD), severely damaged (SD) and uninoculated (U) kernels. 324 

‘nd’ stands for non-detectable level of DON (< 5 ng/ sample). 325 

 Calibration set Validation set 

  Kernel weight  (g) DON (ppm) Kernel weight  (g) DON (ppm) 

Mean 

A 0.054 ± 0.005 1.93 ± 4.49 0.056 ± 0.005 4.99 ± 7.83 
MD 0.048 ± 0.008 25.31 ± 53.94 0.046 ± 0.010 56.82 ± 107.43 
SD 0.036 ± 0.009 136.34 ± 123.04 0.032 ± 0.008 117.61 ± 107.25 
U 0.050 ± 0.013 0.09 ± 0.05 0.045 ± 0.008 0.01 ± 0.05 

Minimum 

A 0.045 nd 0.051 0.18 
MD 0.034 nd 0.029 nd 
SD 0.019 0.48 0.018 0.52 
U 0.033 nd 0.034 nd 

Maximum 

A 0.062 20.50 0.064 21.91 
MD 0.061 267.37 0.061 355.32 
SD 0.056 386.51 0.048 340.10 
U 0.062 0.66 0.058 0.18 

 326 

327 
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Table 2 Mean (± standard deviation) percentage of damaged pixels in uninoculated, asymptomatic, 328 

mildly damaged and severely damaged kernels of the calibration (n= 248) and validation (n=112) 329 

images. Ventral and dorsal images were pooled for each kernel category. 330 

  Uninoculated Asymptomatic Mildly Damaged Severely Damaged 

Calibration set  21.5 ± 5.4 28.1 ± 8.0 39.8 ± 12.9 62.8 ± 16.4 

Validation set  26.5 ± 7.4 29.3 ± 7.1 46.9 ± 18.4 73.3 ± 16.3 

 331 
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 333 

Figure 1: Presentation of kernels for hyperspectral imaging. Ventral and dorsal surfaces of 31 test 334 

set kernels (A) and the 14 validation set kernels (B) from each kernel category were scanned. 335 

Numbers in the cells represent kernel numbers. Kernels were scanned with their basal portions 336 

towards the white reference. Kernels 28, 29, and 30 in the calibration set and kernels 11, 12 and 337 

13 in the validation set were rotated 90o to serve as signposts. 338 

339 
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 340 

Figure 2: Scanning electron micrographs of ventral and dorsal surfaces of hulled kernels of healthy 341 

(A and B, magnification = 38 x) and Fusarium-damaged (C and D, magnification= 38x) kernels 342 

of the oat cv. Bessin. Higher magnification reveals profuse growth of F. graminearum mycelia in 343 

the crease on the palea (E, magnification= 181x) and on the lemma (F, magnification= 181x).  344 

345 
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 346 

Figure 3: Scanning electron micrographs of ventral and dorsal surfaces of dehulled kernels of the 347 

oat cv. Bessin.  A and B show well-formed mycelium on ventral (A, magnification= 39x) and 348 

dorsal (B, magnification= 38x) surfaces of healthy kernels, with the trichomes (tr). C and D show 349 

ventral (C, magnification= 43x) and dorsal (D, magnification= 39x) surfaces of mildly damaged 350 

kernels, arrow indicates mycelia of Fusarium graminearum. E and F are micrographs of ventral 351 

(E, magnification= 39x) and dorsal (F, magnification= 41x) surfaces of severely damaged kernels. 352 

G and H are higher magnifications of fungal growth on the ventral (G, magnification= 1.6kx, hy= 353 

hyphae, and tr= trichome) and dorsal surfaces (H, magnification= 1.46kx).  354 
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 355 

Figure 4: Scanning electron micrographs of cross sections of healthy (A, magnification= 95x; and 356 

B, magnification= 1.34 kx) and Fusarium-damaged (C, magnification= 95x; and D, 357 

magnification= 1,34 kx) kernels of the oat cv. Bessin. A well formed aleurone layer (al) and 358 

endosperm with small and large starch granules in the protein matrix of the healthy kernel is 359 

displayed in B. Hyphae (hy) of Fusarium graminearum and collapsed aleurone layer and damaged 360 

endosperm are shown in D. 361 

362 
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 363 

Figure 5: Partial least squares (PLS) regression on the calibration set kernels with the average 364 

spectra of kernels as X variables and DON*= [log(DON)]^3 values as Y variables. (A) PLS scores 365 

of calibration set kernels on component 1 versus component 2, with separation line from linear 366 

discriminant analysis. A- asymptomatic, M- mildly damaged, S- severely damaged and U- 367 

uninoculated kernels. (B) PLS loading weights from the first component. Wavelengths of interest 368 

are marked by arrows. 369 

370 
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 371 

Figure 6: Image analysis of calibration set kernels comprising seven uninoculated, seven 372 

asymptomatic, seven mildly damaged and ten severely damaged kernels. (A) Sample presentation 373 

for scanning. Numbers represent the kernel number in the original calibration set and letters 374 

represent kernel category. A- asymptomatic, M- mildly damaged, S- severely damaged and U- 375 

uninoculated kernels. (B) Reflectance spectra of one selected channel. (C) Mask used to remove 376 

background from images. D) Image showing infection in grains. Red pixels represent DON-377 

contaminated/ Fusarium-damaged areas and green pixels represent DON-free/ healthy areas. 378 
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 379 

Figure 7: Classification of pixels in validation images. Fusarium-damaged/ DON-contaminated 380 

areas are depicted in red while healthy/ DON-free areas are depicted in green. DON values of 381 

kernels of interest (kernels with relatively high DON level in the mildly damaged category and 382 

kernels with low DON level in the severely damaged category) are shown. 383 

384 
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 385 

Figure 8: Measured versus predicted DON*= [log(DON)]^3 values of validation kernels using the 386 

partial least squares (PLS) regression model developed (A) and the PLS- linear discriminant 387 

analysis model (B). 388 

 389 


