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Reviewer #1:     The idea behind the proposed methodology appears to be sound, i.e., to combine the potentiality of 

multi-block and multi-way analyses, in order to produce a better model for both regression and classification. 

The main problem with this manuscript is that the performance improvement announced in the introduction is really not 

seen in the experimental data sets. On the contrary, previous methods appear to be better for regression and 

classification than the newly proposed one. The authors recognize this, and provide an explanation based on the 

increased flexibility of unfolded methods to handle non-linearities. This may be or may not be the case, but the 

important fact here is that the new method does not perform better than the old ones, as promised. 

In any case, non-linearities should not be judged by visual inspection, but on statistical tests. See, for example, S.V.C. 

de Souza, R.G. Junqueira, A procedure to assess linearity by ordinary least squares method, Anal. Chim. Acta 552 

(2005) 25-35, and    V. Centner, O.E. de Noord, D.L. Massart, Detection of nonlinearity in multivariate calibration, 

Anal. Chim. Acta 376 (1998) 153-168. 

        Another problem is the small number of experimental samples, which precludes reaching a definite and reliable 

conclusion. For the experimental data sets, the authors only report the cross-validation RMSECV results. It is desirable 

to have more samples in order to test the results on independent specimens. Otherwise, the conclusions may not be 

reliable. Perhaps if more samples are analyzed, better conclusions could be reached regarding the alleged superiority of 

the new method over competitors. 

As the reviewer 1 properly affirms, SO-N-PLS does not always perform better than the other presented methods in 

terms of prediction. In general, results are comparable; in few cases, another method gives slight better results. The 

main advantage of the novel method is that it allows handling (at the same time) multi-way arrays of data avoiding 

unfolding. It is therefore expected to give models easier to interpret than models based on unfolded data because of a 

more parsimonious model. Parsimonious models are always to be preferred because of the parsimony. Consequently, its 

relevance is on the interpretation of the models even if the accuracy of the predictions is not improved. The introduction 

has been slightly modified in order to make clearer that the novel method can be used for regression and classification 

but that its potentialities are more related to the interpretation of the models rather than to the prediction of a response. 

The analysis of two additional real data sets has been added to the paper in order to discuss more extensively the 

potential of the novel method. 

Following the reviewer suggestion, the discussion of the linearity between the Z-components from SO-PLS and SO-N-

PLS and the response (Section 4.2 in the manuscript) has been extended and further investigated. (Non)-linearities have 

been tested by the run test and the Durbin Watson test. The Durbin Watson test indicates that the second Z-component 

from SO-PLS is the only one having a linear relationship with the concentration of propanol. From the run test it 

appears that the second and (to a lesser extent) the first Z-components from SO-PLS have a linear relationship with the 

response. The Z-components from the SO-N-PLS model never show a linear relation with the response. These results 

have been included in the manuscript.   

         

        Minor: 

1)      Do not use unexplained acronyms, especially in the title. In the Introduction, EEM, etc. need to be detailed the 

first time they are introduced.  

All the acronyms have been removed or explained.  

 

2)      Even when Figure 1 is clear on the advantage of using SO-NPLS over other procedures, at least in the simulations 

and for some noise levels, I think you need to compare the results using some statistical test with a certain significance, 

and not leave the comparison to visual inspection. You may use the randomized test of van der Voet (Chemom. Intell. 

Lab. Syst. 25 (1994) 313) to compare RMSE values. ANOVA analysis of methods, samples and noise would tell you 

the relative importance with regard to each other, which is OK, but will not tell if the gain in RMSE with one particular 

method over a competitor is statistically significant.  

 

Following the suggestion of the reviewer, the qualitative considerations already reported in the manuscript have been 

confirmed using the randomization approach of Van der Voet. The following sentence has been added to the 

manuscript: “These qualitative considerations based on visual inspection of the figures have also been confirmed by 

statistical testing using the randomization approach suggested in [30]. The test showed that the differences between the 

results obtained with SO-N-PLS and either SO-PLS or MB-PLS, for the cases with high noise and a small number of 

samples, were statistically significant (p<0.05). On the other hand, no significant difference was evidenced between the 

results of SO-PLS and MB-PLS.” 

 

 

Reviewer #2: The article entitled "Extension of SO-PLS to multi-way arrays: SO-N-PLS" provides a good description 

Response to Reviewers



of a novel method for regression/classification in the presence of multiple blocks of data, being either some or all of 

them multi-way structured. Overall, the proposed approach seems to be sound and the comparison carried out by the 

authors clearly proves the pros of SO-N-PLS over MB-PLS and SO-PLS in specific circumstances. I consider the 

manuscript acceptable for publication after minor revisions: 

 

- I would slightly rewrite the introduction of the paper. First, I would stress more the issue of the parameter estimation. 

This is a really interesting problem and, according to me, needs further comments. Please also refer to the article 

"Bilinear modeling of batch processes. Part III: parameter stability", in which an interesting overview of such an aspect 

can be found. Then, I would better highlight the advantages resulting from fusing multiple blocks of data. Both these 

points are fundamental to justify the need, the importance and the use of SO-N-PLS and deserve much more attention to 

be properly elucidated; 

Both the suggested aspects are now mentioned in the introduction. Firstly, the relevance of applying a data-fusion 

technique handling multi-block data sets is mentioned. Then, SO-N-PLS is presented as “a suitable solution for issues 

related to parameter stability, e.g. in process monitoring” and the reader is addressed to the suggested paper.  

 

- Sometimes, the text is a bit hard to follow (see e.g. Section 2.3 and 2.4). I think the authors should improve the general 

readability of the article; 

In the entire manuscript, some parts have been re-written in order to increase clarity.  

 

- The mathematical notation is not coherent along the manuscript. I would suggest to always use lower-case italic 

characters for scalars, lower-case bold characters for vectors and upper-case bold characters for matrices; 

The manuscript has been fixed according to the reviewer suggestions. 

 

- I think the authors should also justify the choice/need of applying LDA in the PLS subspace. I guess that could be of 

interest for potential readers. 

The reasons for the choice have been briefly summarized in the manuscript and the reader is addressed to a reference 

for more details.  

 

 



HIGHLIGHTS 

 Extension of SO-PLS to multi-way arrays. SO-N-PLS handles multi-way arrays: unfolding is not 
required. 
 

 SO-N-PLS filters out the noise better than SO-PLS and MB-PLS. Simulation studies show that SO-
N-PLS performs better than the unfolded methods (SO-PLS and MB-PLS) when the sample size is 
small and the data is noisy. 
 

 SO-N-PLS gives rise to a number of graphical interpretation tools. The advantage of these is that 
they take into account the original three-way structure of the data. 

Highlights (for review)
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Abstract 

Multi-way data arrays are becoming more common in several fields of science. For 
instance, analytical instruments can sometimes collect signals at different modes 
simultaneously, as e.g. fluorescence and LC/GC-MS. Higher order data can also arise from 
sensory science, were product scores can be reported as function of sample, judge and 
attribute. Another example is process monitoring, where several process variables can be 
measured over time for several batches. In addition, so-called multi-block data sets where 
several blocks of data explain the same set of samples are becoming more common. 
Several methods exist for analyzing either multi-way or multi-block data, but there has 
been little attention on methods that combine these two data properties. A common 
procedure is to “unfold” multi-way arrays in order to obtain two-way data tables on which 
classical multi-block methods can be applied. However, it is a known fact that unfolding 
can lead to overfitted models due to increased flexibility in parameter estimation. In this 
paper we present a novel multi-block regression method that can handle multi-way data 
blocks. This method is a combination of a multi-block method called Sequential and 
Orthogonalized-PLS (SO-PLS) and the multi-way version of PLS, N-PLS. The new method is 
therefore called SO-N-PLS. We have compared the method to Multi-block-PLS (MB-PLS) 
and SO-PLS on unfolded data. We investigate the hypotheses that SO-N-PLS has better 
performances on small data sets and noisy data, and that SO-N-PLS models are easier to 
interpret. The hypotheses are investigated by a simulation study and two real data 
examples; one dealing with regression and one with classification. The simulation study 
show that SO-N-PLS predicts better than the unfolded methods when the sample size is 
small and the data is noisy. This is due to the fact that it filters out the noise better than 
MB-PLS and SO-PLS. For the real data examples, the differences in prediction are small but 
the multi-way method allows easier interpretation.  

 

Keywords 

Multi-block; N-PLS; SO-PLS; multi-way; MB-PLS; regression; classification 

 

*Revised Manuscript
Click here to view linked References

http://ees.elsevier.com/chemolab/viewRCResults.aspx?pdf=1&docID=7574&rev=1&fileID=169605&msid={2A90EC50-FCBE-48C4-BB8F-44C440C2F2D1}


1. Introduction 
Data tables with more than two modes are called multi-way arrays. This type of data 
structure can arise from many different fields in modern science. Important examples of 
three-way arrays (the most common multi-way arrays) are data from various analytical 
instrumental techniques, e.g. spectroscopy -Nuclear Magnetic Resonance (NMR), 
fluorescence Excitation-Emission Matrix, (EEM)-, chromatography -Gas Chromatography 
(GC), Liquid Chromatography coupled with Mass Spectrometry (LC-MS)- and multispectral 
imaging. In addition, time series data from, for instance, process monitoring (modes: 
batch, variable, time) and environmental analysis (modes: location, variable, time) are 
three-way. Sensory data can also be collected in a three-way array (modes: samples, 
judges and attributes), and data from experimental designs can be reported as functions of 
the experimental factors [1-3] with the factors representing the different ways. 
The most common approach for handling multi-way arrays is to reorganize data in a two-
way array. This is called unfolding, and it can be performed in different ways. In the case of 
three-way arrays we have row-wise unfolding, column-wise unfolding and tube-wise 
unfolding. Applying the first approach, a three-way array   of dimensions       can 

be unfolded to a matrix   of dimensions       .  In the column-wise approach, a three-
way array   of dimensions       is unfolded to a matrix   of dimensions      . 

Finally, in the tube-wise approach, the   matrix’s dimensions become      .  
The unfolding procedure makes multi-way arrays suitable for classical multivariate data 
analysis, but there are also some drawbacks with this approach. Firstly, model building 
using unfolded matrices can lead to overfitting since the number of estimated model 
parameters increases, often without improving the predictive power. Hence, the increased 
complexity is mainly used for fitting noise. Interpretation can also be more difficult when 
the original data structure is lost, both because of overfitting and of the increased number 
of parameters. Multi-way methods have been developed to overcome these drawbacks. 
PARAFAC [4-5], N-PLS [6] and Tucker-2 and Tucker-3 models [7] are some of the main 
methods that retain the original dimensions of a multi-way array. 
The development of new technologies and instrumentations is also making it common to 
have multi-block data sets. For example, the data blocks could represent background 
information on the samples, various instrumental measurement techniques, different 
times of measurement and multiple quality attributes. In these situations, it is more 
efficient to analyse the blocks jointly in order to account for all the actual information on 
the system at study [8-9]. 
Multi-block methods can handle several blocks of data at the same time, and examples of 
such methods are Multi-Block-PLS (MB-PLS), Sequential and Orthogonalized Partial Least 
Squares (SO-PLS), Parallel Orthogonalized Partial Least Squares (PO-PLS), OnPLS and 
Coupled Matrix and Tensor Factorization (CMTF) [10-16].  
This is a new and emerging field, and many research challenges remain unsolved.  
Previous work [13,17] has shown that the SO-PLS regression method provides similar (and 
sometimes better) predictions than MB-PLS, and that it has some properties that makes it 
particularly useful for interpretation purposes. So far, SO-PLS has been developed for two-
way arrays only. In this paper we show how SO-PLS and N-PLS for multi-way regression can 
be combined to form a new regression method that we call SO-N-PLS. It can be used to 
analyze multiple multi-way predictor blocks or a combination of multi-way and two-way 
blocks without unfolding the multi-way arrays. This characteristic provides a number of 



advantages. First of all, SO-N-PLS is expected to lead to models easier to interpret than 
unfolded analysis and may have a better prediction accuracy. Additionally, it could 
represent a suitable solution for issues related to parameter stability, e.g. in process 
monitoring (a proper description of the problem falls outside the scope of this paper, but it 
can be found in [18]).  
In Fig. 1 we show a graphical representation of the data structures that can be handled by 
SO-N-PLS, and also how they can be unfolded in order to be analyzed by two-way methods. 
In this paper the focus will be on two- and three-way arrays, but more general situations 
can also be handled within the same framework.   
We will discuss how SO-N-PLS can be applied to both regression and classification 
problems. The novel method will be compared to SO-PLS and MB-PLS on unfolded data, 
and we will in particular investigate the following hypotheses: 

 SO-N-PLS can give improved interpretation compared to unfold analysis. 

 When three-way data arrays present a clear trilinear structure, SO-N-PLS can 

provide better predictions than unfolded analysis. This is especially so for small 

sample sizes and noisy data, since the risk of overfitting is higher. 

In order to investigate these aspects, both real data and a simulation study will be used.    

------------------------------------------------------Figure 1 approx. here------------------------------------- 

 

2 Material and methods 

2.1 Sequential and Orthogonalized Partial Least Squares (SO-PLS) regression 

Sequential and Orthogonalized Partial Least Squares (SO-PLS) [13] is a multi-block 
regression method for multiple predictor blocks. The model is assumed to be linear, and 
with two blocks the general formula is:  

          (1) 

where        and         are the two predictors blocks,         is the response 

(categorical if the model is used for classification),         and         are the regression 

coefficients for each of the two blocks and         is the residual matrix. In all cases, the 

data sets are assumed to be centered.  
In this work we consider multi-block models with two predictor blocks, but it is 
straightforward to extend the method to more than two blocks [13].   
The SO-PLS algorithm with two predictor blocks requires four steps (in addition to 
centering and possibly scaling the data): 

1.   is fitted to   by PLS-regression, giving PLS scores   . 

2.   is orthogonalized with respect to the scores    from step 1 (obtaining      ): 

             
    

    
    (2) 

3. Residuals from the first PLS are fitted to      , giving PLS scores       . 



4. The full predictive model is computed as the ordinary least squares fit of   to    and 

      . 

Since the first set of scores are linear functions of   and the second set of scores are 

linear functions of       which again is a linear function of  , this means that the 

equation can be reformulated into Eq. (1).  

When more blocks are available, the procedure can be repeated as explained in [1]. 
Compared to MB-PLS, SO-PLS has the benefit of being invariant to block scaling, it allows 
different numbers of components from each block, and it permits individual interpretation 
of the contributions of each block. The  -block is interpreted by looking at the first PLS 
model. The  -block can be interpreted by looking at the scores        obtained in step 3 
and the loadings obtained by regressing   onto       .  
SO-PLS can be combined with Linear Discriminant Analysis (LDA) [19] in order to create 
classification models [17]. A discriminant classifier has been preferred because it ensures 
that each sample is assigned to only one class. Among the discriminant classification 
methods, LDA has been chosen because it fits well with the SO-PLS philosophy and it 
allows representation of the classification results by means of canonical variates (more 
details in [17]). The method is then called SO-PLS-LDA, and the only difference is that LDA 
is applied to the concatenated scores             instead of ordinary least squares in step 
4.  
 

2.2 Multi-Block Partial Least Squares (MB-PLS) regression 

Multi-block PLS is a well-established regression method [10-11]. The prediction model is 
estimated by classical PLS regression on the concatenated predictor blocks   and  . In 
order to avoid that blocks of high dimensionality or large values dominate the model, data 
are usually scaled by dividing each block by its Frobenius norm. The PLS scores are called 
super-scores, and it is possible to calculate so-called block-scores, block-weights and block-
loadings for interpretation purposes [10-11]. In the same way as classical PLS, MB-PLS can 
be used as a starting point for classification models. In this work, classification is performed 
by applying LDA to the super-scores [20]; we are going to refer to this method as MB-PLS-
LDA. 
 
2.3 N-PLS 
PLS is a direct extension of classical PLS for multi-way arrays. In the three-way case it is 
called tri-PLS, and the bilinear decomposition of the predictor array is replaced by a tri-
linear decomposition. For         , the  -component model corresponds to:  

 

            
    

      
 
                (3) 

 

where   are the scores and    and    are the weights of the second and third mode, 
respectively. The model corresponds to the so-called Martens PLS algorithm [21], in which 
there are no additional sets of loading vectors   as in the two-way PLS algorithm. The 



loadings   are not used in N-PLS, as they would not provide orthogonality of the scores in 
the same way as in two-way PLS. The components are determined sequentially, and the 
two sets of loading weights   provide scores   that have maximum covariance with the 
still unexplained part of the response  .  
The method can easily be extended to higher order data, and it can also be applied for 
more than one response variable; in which case it becomes iterative. N-PLS can be 
combined with LDA for classification purposes. Similarly to MB-PLS-LDA, LDA is applied to 
the scores. We refer to this method as N-PLS-LDA. 
 

2.4 SO-N-PLS 

The algorithm proposed here combines the SO-PLS algorithm with N-PLS regression in 
order to build multi-block models with multi-way arrays as predictors. It is here presented 
only for three-way arrays, but as for N-PLS itself, it can easily be extended to arrays of a 
higher order. 
The algorithm is the same as explained in paragraph 2.1, with the main difference that 
regressions which involve multi-way blocks are performed applying N-PLS instead of PLS. 
One then ends up with two sets of scores (   and       ) as for SO-PLS, and can run an 
ordinary least squares fit of   onto the scores. Note that it does not matter whether the 
three-way array is first or last. All the properties described for SO-PLS in section 2.1 are 
retained. 
The orthogonalization in SO-N-PLS is slightly different than in SO-PLS when the second 
block is multi-way. The three-way  -block of dimension N x M x I is first unfolded row-wise 

to    , a matrix of dimensions     . Then,       is obtained replacing   with     in Eq.2 
before       is refolded back to the original three-way structure.  
In order to obtain a regression equation in the original variables (instead of score vectors), 
the model needs to be formulated in terms of unfolded matrices. With two sets of 
unfolded matrices, i.e. if two three-way blocks are involved, the equation corresponding to 
Eq. 1 becomes: 

               (4) 

Where    , is the unfolded  , a matrix of dimensions     .          and          are the 

regression coefficients. Note that N-PLS involves two sets of weights,    and   . These 
weights are different from the weights extracted by PLS on an unfolded three-way matrix. 
Likewise, the   and   (from Eq.1) and   and  , are not the same. Regression coefficients 
from SO-PLS and SO-N-PLS models have same size, but they are calculated differently.  
Here, regression coefficient are calculated as suggested by De Jong in [22] (procedure 
called Method 2). 

Firstly, weights   are calculated as the inner product of the weights    and   . Then, the 
loading-weights   are obtained as: 

                          (5) 

Where   is the upper triangular part of    .  
Then,         can be calculated as:  

                                   (6) 



where   are the  -loadings.  
SO-N-PLS can be used for classification problems by applying LDA on the concatenated    
and       , as described for MB-PLS and SO-PLS. We call this method SO-N-PLS-LDA. 
 
2.5 Estimating the number of optimal components in multi-block models 
The number of latent variables to be used in each PLS regression can be decided by either 
a global or sequential strategy. In the global strategy, all combinations of components from 
each block are tested and evaluated using the so-called Måge-plot [13]. In the sequential 
strategy (not used here), the number of components to use for the first block is 
determined before the number of components for second block is assessed. With this 
strategy one extracts all relevant information from   before   is introduced. In both cases, 
it is important to validate the model carefully since many combinations of components are 
tested.  
In this work, the root mean square error of cross-validation (RMSECV) is used for selecting 
components in the regression models. For classification problems, the cross-validated 
classification error is used [17].  
 

2.6 Graphical inspection of the model parameters 

The interpretation tools used for SO-PLS are also applicable for SO-N-PLS, as for instance 
the interpretation of the scores plot discussed in [13,17]. The scores can be used to 
investigate the distribution of samples and look for clusters and groupings, just like for 
regular PLS. Scores can be plotted internally for each block, or scores from   and   may be 
plotted against each other since they are all orthogonal.  
As explained in Paragraph 2.3, N-PLS follows the Martens PLS algorithm, in which the 
weights   are used to calculate the scores. For the  -block, these weights can be used 
directly to interpret the variable contributions for each component in SO-N-PLS. For three-
way arrays, there are two possible visualizations of the weights. One is obtained by plotting 

   and     individually. Another alternative is to plot the outer product of         as a 
landscape.  
For MB-PLS and SO-PLS,  -loading weights for each component will be of size     . They 
can be plotted as they are, or folded back to an     matrix and plotted as a landscape 

similarly to the outer product    and    for SO-N-PLS.  
Interpretation of the  -block is slightly different than for the  -block since       is not in 
the row space spanned by  . In SO-PLS it has been shown that the  -block can be 
interpreted by calculating loadings    as projections of   itself on        [17]: 

          
        

        
      (7) 

In this way, loadings are showing the relation between   and the extracted information 
(after   has been modelled).  
In the three-way case, the  -weights can be re-calculated in a similar way by projecting the 
unfolded   on       :  

          
        

        
     (8) 



By Eq. 8 we obtain unfolded   . These can then be reshaped and plotted in the same ways 
as for   . 
Additionally, regression coefficients can be used to interpret variable contributions. One 
can, for instance, plot (one block at a time) regression coefficients from SO-N-PLS (  and ν 
in Eq.4) and SO-PLS (  and   in Eq.1) as shown in Fig. 6. As for the weights, coefficients can 
be reshaped and plotted as landscapes.  
 

2.7. Data analysis 

All data analyses were performed using MATLAB (R2012b, The Mathworks, Natick, MA), 
using in-house routines. MATLAB routines for MB-PLS, SO-PLS, SO-N-PLS are available for 
download at www.nofimamodeling.org.  
 

3.   Data sets 

3.1 Simulated Data 

Data sets consisting of two three-way predictor blocks (  and  ) and a response vector ( ) 

were simulated to investigate differences between SO-N-PLS, MB-PLS and SO-PLS under 
various scenarios. The data sets are constructed in such a way that they fit a low-
dimensional three-way structure. The main focus is to compare the method performances 
on small and noisy data sets, since these are most prone to overfitting. Data sets were 
simulated following a full factorial design of the factors “number of samples” (six levels), 
and “amount of random noise” (four levels) ending up with 6×4=24 different factor 
combinations. Noise was added to each variable of   and  . The six different samples sizes 

(   ) are 15, 20, 25, 35, 50 and 60, while the four levels of added noise (           ) 
correspond to 10%, 30%, 40% and 50% of the signal. Noise was added also to  , at a fixed 
level of 1.5% of the signal. All noise added was homoscedastic independent Gaussian. 
Each factor combination was replicated one hundred times, resulting in 6 × 4 × 100 = 2400 
different data sets. For each data set, an independent test set (  ,    and    ) of 600 

samples was constructed for validation purposes. 
The three-way   ,   ,    and    predictor blocks were simulated to mimic fluorescence 

spectra, and were created in the following way:  
              is generated as the outer product of   ,    and    while           

    as the outer product of   ,    and   . Scores    and    are both        matrices of 
normally distributed random numbers.    and    (both      ), and    and    
(both     ) are loadings extracted from real fluorescence spectra of mixtures of 
aminoacids (data set described in [23]). Consequently, the loading vectors are not 
orthogonal. Correlations between components within each loading are -0.21, -0.48, 0.93 
and -0.15,for   ,    ,    and   , respectively. 
The response vector   is built as:  

            

Where          is the coefficient vector generated as a matrix containing random values 
drawn from the uniform distribution on the interval (0.05, 1.05).  

http://www.nofimamodeling.org/


  ,    and   (and consequently all the blocks) as well as the added noise are regenerated 
in each simulation. 
 

3.2 Chemical mixture data set 

28 samples of mixtures of five different biochemical compounds were analyzed by EEM 
and NMR. These compounds are two peptides, Valine-Tyrosine-Valine (Val-Tyr-Val) and 
Tryptophan-Glycine (Trp-Gly), a single amino acid, Phenylalanine (Phe), a sugar, 
Maltoheptaose (Malto), and an alcohol, Propanol. More details can be found in [24]. The 
two cubes of measures are used as               and                 blocks in 

an SO-N-PLS regression model, in order to predict the concentration of compounds in the 
mixture. The same predictor blocks will be used to predict the five different responses 
    ,    ,      ,      and      using five individual regression models. The response 
vectors correspond to the concentrations of Val-Tyr-Val, Trp-Gly, Phenylalanine, 
Maltoheptaose and Propanol, respectively.  
 

3.3 Lambrusco Data set 

Lambrusco is a typical wine of the district of Modena (Italy) with protected denomination 
of origin (PDO). Lambrusco can be produced using mixtures of different species of grapes 
harvested in the area close to Modena. The fraction of the different grapes used is strictly 
fixed by the law under the PDO legislation. Unfortunately, frauds attempts in the food 
sector are quite common and wine is one of the main targets. Typical wine frauds can for 
instance be to use different fractions or lower quality grapes in PDO wines. 
Characterization and authentication of the grape cultivars used in wine production is 
therefore an important task, although not straightforward. In this work, the ability to 
distinguish between three different types of PDO Lambrusco wines based on instrumental 
analysis is tested. A total of fifty-eight samples of wines (all produced in 2009) were 
analyzed by EEM and NMR. Of these, nineteen are of “Lambrusco Grasparossa di 
Castelvetro PDO”, twenty of “Lambrusco Salamino di Santa Croce PDO”, and nineteen of 
“Lambrusco di Sorbara PDO”. In the following analysis, the EEM three-way array is used as 
              while the NMR is used as            . SO-N-PLS-LDA model is then 

built to classify wines belonging to the three classes Grasparossa, Sorbara and Salamino. 
The response block is a categorical matrix carrying the class-belonging information. For a 
detailed description of the data set, see [25].  
 

3.4 Butter Data set 

Butter is a food product widely consumed all over the world. It contains different 
photosensitizers which absorb in the UV, violet and visible regions of the spectrum. Various 
samples of industrial butter were analyzed in order to study the oxidation of 
photosensitizers at different conditions. Samples were packed and exposed to three 
different light colors (Violet, Green and Red) in different atmospheres (low or high oxygen); 
two samples were not exposed to any light.  The duration of the exposure varied from six 
to forty-eight hours. Of these, twenty-one samples were analysed by fluorescence 



spectroscopy (EEM). The emission side was scanned from 580 to 720 nm, and excitation 
was scanned from 350 to 452 nm. Single emission spectra (405-563 nm) were also 
measured on a different instrument. This instrument has a higher signal-to-noise ratio and 
might therefore contain more detailed information than the EEM landscapes. Finally, the 
same samples were judged by eleven panelists (more details can be found in [26]). Here, 
the two fluorescence data blocks will be used to predict the sensoric attribute acidic odour. 
The EEM array of dimensions 21 274 35 will be used as   , the emission fluorescence 

block of dimensions 21      as   and the   vector of dimensions 21    is the response 
vector.   
 

3.5 Sugar process data set  

Refinement of sugar is a long process divided in different steps. In order to understand the 
chemistry involved in the process, 268 sugar samples from the last stage of the productive 
process were measured spectrofluorometrically. Emission spectra were registered from 
275 to 560 nm while excitation was registered for seven wavelengths (230, 240, 255, 290, 
305, 325, 340 nm), yielding a three-dimensional   -data block of dimension 268 × 571 × 7. 

Additionally, seven auxiliary laboratory measurements  (        ) were used together with 

the fluorescence spectra for the prediction of the sugar color (        ), defined as a unit 

derived from the absorbance at 420 nm. For more details, please consult the original 
publication [27]. 
 

4. Results and Discussion  

The simulated data sets and the sugar data set were validated by independent test sets. 
Sugar samples were divided in training (200 samples) and test set (68 samples) by the 
Duplex algorithm [28]. The mixture, Lambrusco and the butter data sets were not 
considered large enough for a test set validation. Therefore, these models are validated by 
leave one out cross validation.  
 

4.1  Results for the simulation study 

SO-PLS and MB-PLS on the unfolded arrays and SO-N-PLS on the original data were 
performed on all the 2400 simulated data sets. The simulation study is divided in two 
parts: Part I and Part II, differing in how the model complexity is estimated. In the first one, 
the true number of latent variables (LVs) is used, namely two for each block in SO(-N)-PLS 
and four in MB-PLS. This is done in order to compare the performances of models when 
the definition of optimal model complexity is not affecting the results. In part II, the 
numbers of components are selected for both blocks simultaneously using the Måge-plot 
(as described in paragraph 2.5). Instead of selecting the number of component resulting in 
the lowest RMSECV, an adjustment to ensure parsimony in the selection was carried out. 
The selected number/combination of components in MB-PLS/SO-(N)-PLS models is the 
smallest one giving an RMSECV not significantly different from the absolute minimum, 
decided by a χ2 test (significance level 5%) [29]. Part II is more relevant for a real data 
analysis when the true complexity is unknown. 



ANOVA was used to evaluate the effects of Method, Samples (N) and Noise (L) on the 
RMSEPs (averaged over 100 replicates). For results, see Table 1. In the simulation study 
Part I, the largest effects (as measured by MS’s and F-values) are given by Method and 
Samples. For the simulation study Part II, Samples gives the largest effect followed by 
Method and Noise. It is clear that, relative to the number of samples, the effect of Method 
is smaller when selecting the number of components rather than knowing the ‘correct’ 
number a priori. This means that, when each method is allowed to find the optimal 
number of components, the differences between methods become smaller. Even though 
the underlying complexity of the two blocks is two, a different number of components 
could be optimal for the model. This aspect will be discussed further below. 
Noise has a smaller effect than Samples in both studies. This suggests that the prediction 
error is more affected by a reduction in sample size than by increased noise. The prediction 
errors for the two simulation parts are plotted in Fig. 2 and Fig. 3 respectively, and it is 
clear that all methods have higher prediction errors when the number of samples is low. 
Also the differences between methods are larger at high noise levels.  
As expected, the interaction between Samples and Noise is quite large, meaning that small 
data sets with high noise perform even poorer than data set having only low sample size or 
only high noise. 

------------------------------------------------------Table 1 approx. here------------------------------------- 

------------------------------------------------------Figure 2 approx. here------------------------------------- 

The averaged RMSEPs for Part I are presented in Fig. 2. The three regression methods show 
comparable performance for 10% of added noise, and at this noise level the number of 
samples has little effect on the prediction error. When the noise is higher, SO-N-PLS 
consistently gives better predictions than the other methods. The difference is largest 
when the noise level is high and the number of samples is low. These results are in 
agreement with the initial hypothesis; SO-N-PLS will provide better predictions than 
unfolded analysis on small sample sizes and on noisy data.  
Fig. 3 shows averaged RMSEP values for Part II of the simulation study, where the number 
of latent variables are chosen to minimize the RMSEP in each model.  

------------------------------------------------------Figure 3 approx. here------------------------------------- 

The results in Fig. 3 can be compared to Fig. 2, and the trends are very similar: SO-N-PLS 
outperforms the other methods when the noise is high and number of samples is small. 
Note however that the differences between methods become much smaller when the 
number of latent variables is selected as part of the modeling. This is in close 
correspondence with the ANOVA: the differences between methods are smaller in Part II. 
Here, there is no relevant difference between any of the methods when the number of 
samples is 25 or more (30-40% noise) and 35 or more (50% noise). The results from SO-PLS 
and MB-PLS are also comparable, which suggests that SO-PLS and MB-PLS are similar from 
a prediction point of view when the number of latent components can be adjusted freely.   
These qualitative considerations based on visual inspection of the figures have also been 
confirmed by statistical testing using the randomization approach suggested in [30]. The 
test showed that the differences between the results obtained with SO-N-PLS and either 
SO-PLS or MB-PLS, for the cases with high noise and a small number of samples, were 



statistically significant (p<0.05). On the other hand, no significant difference was evidenced 
between the results of SO-PLS and MB-PLS.  
SO-PLS gives the highest prediction errors in both parts of the simulation study, but in Part 
II the results were very similar to MB-PLS. This shows that using the “correct” number of 
components for both blocks is not optimal for SO-PLS. This is likely due to the fact that 
residuals from the first fit carry information about the noise and the unmodelled structure 
in  . This needs to be corrected when fitting   to the orthogonalized  . As a consequence, 
SO-PLS could need more components than the “correct” number for the second block.  
An additional simulation was run to investigate how SO-PLS and MB-PLS handle noise in  . 
One hundred data sets were simulated as described above, and 20% noise was added to   
each time. SO-PLS and MB-PLS models were fitted both before and after the addition of 
noise. Results show that SO-PLS gives slightly better predictions than MB-PLS when   is 
without noise, but these results are reversed when noise is added. This supports the 
conclusion in the previous paragraph.  
Fig. 4 shows the average number of latent variables selected for each level of noise and 
sample size. SO-N-PLS uses the same number of components as used to generate the data 
(two components are always chosen) and is therefore not included in Fig. 4. The unfolded 
methods always select a number of components higher than used to generate the data. 
MB-PLS (in blue) generally selects five latent variables for the low noise level, and six when 
the noise is higher. SO-PLS (in green) generally selects three latent variables for the  -block 
and between four and six latent variables for the  -block (dashed green line). These results 
suggest that the second initial hypothesis is also valid; SO-N-PLS gives models that are 
more parsimonious, which is an advantage from the interpretation point of view.  
------------------------------------------------------Figure 4 approx. here------------------------------------- 
In order to further investigate the differences in interpretation, the  -weights from SO-PLS 
and SO-N-PLS on one of the simulated data sets are shown in Fig. 5. The selected data set 
consists of 60 samples and the noise level is 50% for both    and  . 

------------------------------------------------------Figure 5 approx. here------------------------------------- 
Looking at Fig. 5, it is clear that the  -weights from SO-N-PLS are smoother than those 
from the SO-PLS model. Even if the shape of the weights are similar for the two methods, it 
is evident already in the first component that SO-PLS models more noise than SO-N-PLS. 
The third component is strongly influenced by noise, which is reasonable since the number 
of components used to generate the data is two. The same conclusion is reached looking at 
the  -weights from SO-N-PLS and the  -loadings from SO-PLS, and therefore the plots are 
not reported here. The same behavior is also observed for lower noise levels.   
As explained in paragraph 2.6, the regression coefficients can also be used to graphically 
interpret models. Regression coefficients from SO-PLS and SO-N-PLS built on a simulated 
dataset (the same data set shown in Fig. 5) are shown in Fig. 6. 
These coefficients correspond to   and γ in Eq.1 and Eq.4, respectively. Both sets of 
coefficients have been refolded to the three-way structure before plotting Fig. 6.  The 
visual appearance confirms that SO-PLS’ regression coefficients are more affected by noise 
than SO-N-PLS’.  
------------------------------------------------------Figure 6 approx. here------------------------------------- 
The results illustrate that SO-N-PLS is better at filtering out noise when an underlying 
three-way structure is present, while it is included in the model in the unfolded analysis. 
The plot for MB-PLS is similar and therefore not shown.  



 

4.2 Results on chemical mixture data set 

Prediction models for each of the five chemical compounds were fitted by N-PLS using only 
one block at a time, and by SO-N-PLS, MB-PLS and SO-PLS on both blocks. Results are 
reported in Table 2.  
Explained variances for all compounds are generally high for at least one of the one-block 
models, but were sometimes slightly improved by using both blocks. These differences are 
more evident when looking at the RMSECVs.  In all cases, the SO-PLS model gave the best 
prediction results. SO-N-PLS results were comparable except from one case (propanol) 
where the difference is large. The MB-PLS predictions were in all cases less precise than 
SO-PLS.   
These results are not in accordance with the hypothesis, since the unfolded methods 
perform better than SO-N-PLS. A thorough examination of the model revealed that the 
reason possibly stems from the handling of non-linearity in the data. 
------------------------------------------------------Table2 approx. here------------------------------------- 
Fig. 7 shows the concentration of propanol as a function of the first two Zorth-components 
from SO-PLS and SO-N-PLS. From a visual inspection, the second component from SO-PLS 
appears the only one that has a clear, linear relationship with propanol. In order to 
investigate this aspect properly, randomness in the residuals have been tested by two 
different statistical test: the run test and the Durbin Watson test [31]. According to the run 
test, only the first and the second Zorth-components from SO-PLS have a linear relation with 
the propanol concentrations (under the null hypothesis of randomness in residuals, p-
values are 0.09 and 0.55, respectively). The Durbin Watson test suggests that only the 
second Zorth-component from the SO-PLS model has a linear relation with the response (p-
value 0.189). These results indicate that SO-PLS, due to its flexibility, may be better at 
finding relevant linear combinations of the data than the SO-N-PLS which always obeys a 
three-way data structure. The high number of components SO-PLS selected from the  -
block also confirms this hypothesis.   
------------------------------------------------------Figure 7 approx. here------------------------------------- 
The methods differ slightly in the number of selected latent variables. In general, MB-PLS 
selects less components than SO-PLS, which selects the highest number (among the three 
methods). SO-N-PLS selects less components than MB-PLS only in one case (two plus two 
components selected for SO-N-PLS and five for MB-PLS). In another case, the two methods 
select the same number of latent variables (one plus two and three); in all the other 
models SO-N-PLS selects one component more than MB-PLS. This is different from the 
simulation study, where SO-N-PLS gives the most parsimonious models. This could also be 
due to the presence of non-linearity, SO-(N)-PLS needs more components to handle it. 
Alternatively, it could stem from the fact that in the simulations, the response was affected 
by independent components from both   and  , while the relevant information might be 
overlapping in this data set.   
The aim of this study is not to give a detailed chemical interpretation of the system, but 
rather to highlight differences between the graphical interpretations of the methods. As an 
example, weights from the SO-N-PLS, SO-PLS and the MB-PLS models (related to the  -
block) for the prediction of Valine-Tyrosine-Valine are reported in Fig. 8. For SO-N-PLS, the 
outer product of the second and third mode weights is plotted. For MB-PLS and SO-PLS, 
weights are refolded before being plotted. As mentioned in the initial hypothesis, models 



built with a small number of components are easier to interpret. Note that, even if MB-PLS 
has the lowest number of latent variables (three versus two plus two) we need to interpret 
three plus three weights for MB-PLS (three latent variables correspond to three 
components per each block) versus two plus two for SO-N-PLS. Consequently, SO-N-PLS 
model has the least number of weights to plot and interpret.  
The  -weights from the SO-N-PLS model show that the two components represent two 
different compounds, one that has emission around 300 nm and excitation around 275; 
and the other that has emission around 280 nm and excitation around 260 nm. Looking at 
the fluorescence spectra of the pure compounds, these correspond to Valine-Tyrosine-
Valine and Phenylalanine, respectively. The same interpretation is not so straightforward 
from the SO-PLS loadings weights. The first component (Fig. 8b) is similar to SO-N-PLS’, but 
the negative peak has a wider shape. This makes the identification of the excitation peak 
more difficult. In the second component (Fig. 8e) it would be possible to identify the 
excitation peak, but the emission one is too wide to make a clear interpretation. Peaks 
identification looks even more difficult for MB-PLS (Figg. 8c, 8f and 8g). Due to the wide 
shape of the peaks, component one from MB-PLS is difficult to interpret.  Components two 
and three are similar to components one and two (respectively) from the SO-(N)-PLS 
models; but even in this case the width of the peaks would make the chemical 
interpretation weak. Note that MB-PLS is in general more complicated to interpret, since 
each component presents contributions from both blocks. 
------------------------------------------------------Figure 8 approx. here------------------------------------- 
In order to check the starting hypothesis, a further investigation has been conducted on 
the chemical data set. Some random noise (simulated as it is described in 3.1 for the 
simulation study, and correspondent to the 50% of the signal of each block) was added to 
each predictor and new SO-N-PLS, SO-PLS and MB-PLS models were built. This was 
replicated ten times, and averaged RMSECVs and selected number of latent variables are 
reported in Table 3. 
The averaged RMSECVs from the new models agree with the results from the simulation 
study, supporting the first hypothesis. Except for the prediction of the propanol, SO-N-PLS 
is giving the lowest RMSECVs. For chemical reasons, the use of fluorescence spectra ( -
block) to predict propanol cannot be completely reliable from the analytic point of view 
and its prediction cannot be consider an indicator of the model performances. 
------------------------------------------------------Table3 approx. here------------------------------------- 
Consequently, SO-N-PLS is confirmed as the best predictor method (among these three) for 
noisy data. 
Concerning the number of latent variables, SO-N-PLS is once again the most parsimonious 
method in selecting latent variables. These results are also in agreement with the 
simulation study, supporting the second hypothesis. 
 

4.3  Results on the Lambrusco data set 

Classification results 

Classifications of Lambrusco wines were first performed by single block methods; N-PLS-
LDA on the three-way   (GC-MS) and PLS-LDA on the two-way   (NMR). Then, these 

models were compared to the multi-block methods MB-PLS-LDA, SO-PLS-LDA and SO-N-
PLS-LDA. Results for all models are reported in Table 4. It is clear that the  -block has the 



highest discriminating power, giving a total classification error of 24% versus 59% for the  -
block. By combining   and  ,  the error is unchanged for SO-N-PLS-LDA and SO-PLS-LDA 
and one sample more is misclassified by MB-PLS. In other words, the multi-block models 
gave almost identical results to the model using only  . The numbers of latent variables are 
the same for all multi-block models: six for MB-PLS and two plus four for SO-(N)-PLS.  
------------------------------------------------------Table 4 approx. here------------------------------------- 
One way to interpret the SO-N-PLS-LDA models is to look at the cross-validated predictions 
in the space of the canonical variates, as shown in Fig. 9. In order to do that, the cross-
validated  -values are used to calculate the covariance matrix necessary to extract the 
canonical variates. More details can be found in [17].    
------------------------------------------------------Figure 9 approx. here------------------------------------- 
There is a strong overlap between the Grasparossa and Salamino classes. The reason for 
this is that both wines are made from mixtures. According to law, Lambrusco Salamino di 
Santa Croce PDO contains 85% of Salamino grape and the rest 15% is of grapes harvest in 
Modena’s area (so they could be Grasparossa or Sorbara). The same applies to “Lambrusco 
Grasparossa di Castelvetro PDO”, while “Lambrusco di Sorbara PDO” contains 60% of 
Sorbara grape plus 40% Salamino grape. 
In order to focus on the differences between Salamino and Sorbara, and to check the 
possibility of distinguishing between the two, a new classification models were fitted only 
to the thirty-nine Salamino and Sorbara samples. Cross-validated predictions in the space 
of the canonical variates (from the SO-N-PLS-LDA model) are visualized in Fig. 10. Some 
misclassification cannot be avoided due to the nature of wines: two Salamino and three 
Sorbara samples are misclassified in this model (Fig. 10, red bars), and the classification 
error is 10% and 16% for Salamino and Sorbara respectively. N-PLS-LDA on  , MB-PLS-LDA 

and SO-PLS-LDA misclassify the same samples, indicating that these are intrinsically hard to 
distinguish. PLS-LDA on   misclassifies even more samples (six and three misclassified for 
Salamino and Sorbara, respectively).   
------------------------------------------------------Figure 10 approx. here------------------------------------- 
 

4.4 Results on the butter data set 

   and   data blocks described in Section 3.4 are used to predict the acidic odour of the 

butter samples. Firstly, the two blocks    and   are used individually for the prediction of 

the attribute (by N-PLS and PLS, respectively).  

Then, SO-N-PLS, MB-PLS and SO-PLS models were built. RMSECVs for all these models are 
reported in Table 5.  
------------------------------------------------------Table 5 approx. here------------------------------------- 
Looking at results reported in Table 5, it is evident that the multi-block models show a 
prediction ability statistically not different from the PLS model on   (and better than the N-
PLS model on   ). From the interpretation point of view, models show a much more 
different scenario.  
Looking at the weights plots reported in Fig. 11 it is quite evident that SO-N-PLS models are 
the easiest to interpret. Following the identification of peaks suggested in [26], the first 
component is given by the contribution of riboflavin while the second one shows the 
chlorophyll peak. The same compounds would be identified looking at the weights of SO-



PLS (Figg. 11b and 11e), but the peak in Fig. 11e looks less defined than in Fig. 11d. 
Investigating the MB-PLS   -weights (Figg. 11c, 11f, 11g and 11h), the interpretation of the 
peaks would not be straightforward. The first three components seem dominated by the 
contribution of riboflavin, while the fourth (Fig. 11h) shows a mixed contribution from 
riboflavin and chlorophyll a.  
------------------------------------------------------Figure 11 approx. here------------------------------------- 
 -regression coefficients for the SO-N-PLS, SO-PLS and MB-PLS models are displayed in Fig. 
12 a, b and c, respectively. Without going too much in depth in the interpretation of the 
regression coefficients (which may not be reliable for the reasons discussed in [32]), a 
visual inspection of Fig. 12 confirms that SO-N-PLS models less noise than the other two 
methods, as the peaks in Fig. 12a look smoother than those in Fig. 12b and c.  
------------------------------------------------------Figure 12 approx. here------------------------------------- 
 

4.5 Results on the sugar data set  

As described in Section 3.5, the    and   blocks are used to predict the sugar color. 
Predictions were made by N-PLS and PLS on the individual blocks and by SO-N-PLS, SO-PLS 
and MB-PLS on both blocks. As mentioned, models were validated on a test set. RMSEPs, 
explained variances and the number of latent variables used for each model are reported 
in Table 6.    
------------------------------------------------------Table 6 approx. here------------------------------------- 
From Table 6 we see that multi-block models, in particular SO-PLS, lead to a better 
prediction ability than models based on the individual data blocks. Even if SO-PLS gives the 
best predictions, it is not the most informative model from the interpretation point of 
view. In Fig. 13 the scores plots for the three different multi-block models are reported. 
Looking at the scores plot from the SO-N-PLS model (Fig. 13 a), it is possible to observe that 
the first  -component is particularly suitable to distinguish the entity of the absorption 
(and therefore the color) of the different components. It is difficult to conclude the same 
looking at the scores plots from the models based on the unfolded data (Figg. 13b and c). 
In fact, in these cases, samples with comparable absorptions are more spread out along 
the first  -component. This is particularly evident looking at the SO-PLS’ scores plot, and 
for samples with   from 20 to 35. 
------------------------------------------------------Figure 13 approx. here------------------------------------- 
 

5. Discussion of the hypotheses mentioned in the introduction 

The first hypothesis was that SO-N-PLS leads to simpler models that could be more easily 
interpreted. This is not completely confirmed, but some clear indications are given in the 
simulation study. In the simulations, SO-N-PLS always selects the actual underlining 
complexity, while MB-PLS and SO-PLS generally need more latent variables (in particular 
for the  -block). This may lead to less stable predictions and more model parameters 
(weights) to interpret.   
Looking at the real data sets, this overestimation of latent variables by MB-PLS and SO-PLS 
is less evident. For the mixture data set, MB-PLS needs less latent variables than SO-N-PLS. 
In all the other sets of data, SO-N-PLS required the same number of components as MB-
PLS. Nevertheless, MB-PLS leads to a more complicated interpretation since all the 



parameters that have to be investigated are doubled (each component gives loadings for 
both blocks). SO-PLS required more latent variables than SO-N-PLS in all cases except one 
(Lambrusco data set) in which all the methods are selecting the same total complexity. In 
the further study on this data set with addition of noise to   and  , SO-N-PLS confirms its 
parsimony in the latent variable selection.  
Despite the number of latent variable accounted in each SO-N-PLS models, it has been 
shown (e.g. scores plot in Fig. 13) that these models are more informative (from the 
interpretation point of view) than the models based on the unfolded data sets.  
Considering the graphical interpretation of the models, SO-N-PLS’ weights can be 
represented directly or mode-wise. Anyhow, comparable plots of weights and regression 
coefficients can be made based on all three methods. In these, we have shown that SO-N-
PLS is better at filtering out noise and thereby gives more clear/interpretable plots. 
Additionally, as shown in the weights plot in Figures 8 and 11, SO-N-PLS leads to models 
whose chemical interpretation would be easier. 
The second hypothesis was that SO-N-PLS is expected to give better predictions for small 
sample sizes and noisy data. The simulation study confirms this, since SO-N-PLS performs 
better than the unfolded methods except when the noise is low (10%). For the low noise 
level, the three methods are comparable regardless of sample size. SO-N-PLS also filters 
the noise better than the other methods, which is clearly seen in Fig. 5 and 6. SO-N-PLS 
outperforms the other regression methods in particular when the number of components 
is set equal to the true number (Part I of the simulation). In all cases, the difference 
between SO-N-PLS and SO-PLS is higher than the difference between SO-N-PLS and MB-
PLS. In the more realistic scenario where the number of components is determined by 
cross-validation (Part II of the simulation), the difference between MB-PLS and SO-PLS 
became negligible.  
From the prediction point of view, the superiority of SO-N-PLS is not visible in the real data 
sets, which is probably due to non-linearities and less clear three-way structure in data. In 
the chemical mixtures data set, the SO-PLS was the best in prediction. Nevertheless, in the 
further study made on this data set, the behaviors shown in the simulation study are 
visible again. In fact, after the addition of random noise to   and  , SO-N-PLS gives the best 
predictions. Concerning predictions in the Lambrusco data set, the methods were 
indistinguishable. Also in the butter data set, results from the three methods are 
comparable. It is important to mention, however, that for practical use of the methods 
these results should be validated more carefully using a new test set, the reason being that 
the both selection of components and the actual prediction results are based on the same 
cross-validation. From the results obtained on the sugar data set, it appears that SO-N-PLS 
and SO-PLS give comparable predictions outperforming MB-PLS.       
 

5.1 Conclusions 

The novel method SO-N-PLS can be used to fit multi-block models when predictor blocks 
are multi-way arrays, without unfolding the arrays. The method can be applied for both 
prediction and classification. It shows some benefits when compared to methods based on 
unfolded data (SO-PLS and MB-PLS), given that the three-way data satisfies a low-
dimensional three-way structure. 



As expected, SO-N-PLS has demonstrated to be the most suitable method for 
interpretation of multi-way and multi-block data sets. Consequently, it is the suggested 
approach when interpretation is the main aim of the analysis. 
From the prediction point of view, simulation studies showed that SO-N-PLS performs 
better than the unfolded methods when the sample size is small and the data is noisy. This 
is due to the fact that it filters out the noise better than MB-PLS and SO-PLS. For the real 
data examples, the superiority of SO-N-PLS method is not so evident, but it performed well 
also for these cases.  
SO-N-PLS has many of the same properties as SO-PLS: it is invariant to block scaling and it 
allows for different numbers of components for each block. It also has some benefits 
related to interpretation, since the contribution from each block can be interpreted 
individually.  
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Figure Captions 

Figure 1 Graphical representation of SO-N-PLS and the multi-block methods on unfolded 
data.  SO-N-PLS can be directly applied on the multi-way arrays avoiding unfolding. a) the 
X-block is three-way, while Z is a matrix. b) both X and Z-blocks are three-way arrays. SO-
PLS and MB-PLS are always applied on the row-wise unfolded matrices. 
 
Figure 2: Average RMSEPs for the simulation study Part I. Each subplot shows a different 
noise level (L), while the number of samples (N) are given on the abscissa. The curves 
represent the three methods; SO-N-PLS (red), SO-PLS (green) and MB-PLS (blue). 
 
Figure 3: Average RMSEPs for the simulation study Part II. Each subplot shows a different 
noise level (L), while the number of samples (N) are given on the abscissa. The curves 
represent the three methods;SO-N-PLS (red), SO-PLS (green) and MB-PLS (blue). 
 
Figure 4: Average number of latent variables selected for each level of noise and sample 
size. Each subplot shows a different noise level (L), while the number of samples (N) are 
given on the abscissa. The curves represent the two methods; SO-PLS (green) and MB-PLS 
(blue). Red and black continuous lines represent the proper complexity for SO-PLS and MB-
PLS, respectively. Dashed lines represent the regression involving the  -block. SO-N-PLS 

not shown because 2 LVs were always selected for both blocks. 
 
Figure 5: X-weights from models on one of the simulated data sets with 60 samples and 
50% noise.  
 
Figure 6: Comparison of X-regression coefficients from SO-N-PLS (left plot) and from SO-
PLS (right plot), from a simulated data set with 60 samples and 50% noise.  
 
Figure 7:     vs        from the SO-N-PLS and SO-PLS models: a) and b)      is reported 
as a function of the first        from SO-N-PLS and the first        from SO-PLS, 
respectively. c) and d)      plotted against the second        from SO-N-PLS and from SO-
PLS, respectively. 
 
Figure 8: Chemical mixture data set. Weights (for SO-N-PLS, SO –PLS and MB-PLS) plots 
(related to the X-block) for prediction of the Valine-Tyrosine-Valine compound.  
 
Figure 9:  Classification of Lambrusco wines. Predictions in the space on canonical variates 
using both X (GC-MS) and Z (NMR) blocks. Circled samples are the misclassified ones. 
 
Figure 10: Classification of Lambrusco wines: Cross-validated predictions in the CVA space 
using both blocks restricted to only two classes (Salamino and Sorbara). Red bars are the 
misclassified samples. 
 
Figure 11 Butter data set: X-weights plots for SO-N-PLS (a and d), SO- PLS (b and e) and MB-
PLS (c,f,g and h) models. 
 



Figure 12 Butter data set: Regression coefficients plots from a) SO-N-PLS; b) SO-PLS; c) MB-
PLS. 
 
Figure 13 Sugar process data set: Scores plots for the multi-block models built on the sugar 
data set: a) SO-N-PLS b) SO-PLS (unfolded data) c) MB-PLS (unfolded data). Legend: Filled 
circles for training set samples, empty circles for test set samples. Yellow: y<20; 
Magenta:20≤y<25; Cyan:25≤y<30; Green:30≤y<35; Blue:35≤y<40; Red:40≤y ≤45 . 
 

 

 



Table 1: ANOVA analysis of RMSEP for the simulation studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Chemical mixtures data set: RMSECVs and Explained variances for the prediction of the concentrations of 
compounds in the mixture. 

 

 

 

 

 

 

 

  Simulation Part I Simulation Part II 

Effect D.o.f. Mean Sq. 

(×10-3) 

F-

value 

p-

value 

Mean Sq. 

(×10-3) 

F-

value 

p-

value 

Method 2 3.1 21.0 0.000 0.8 6.3 0.005 

Samples (N) 5 3.3 22.7 0.000 2.38 18.8 0.000 

Noise (L) 3 0.5 3.2 0.037 0.65 5.2 0.005 

Method*Samples 10 0.3 2.2 0.048 0.16 1.3 0.294 

Method*Noise 6 0.1 0.6 0.707 0.08 0.6 0.721 

Samples*Noise 15 1.3 9.1 0.000 1.06 8.4 0.00 

Error 30 0.2   0.13   

R-squared 0.92     0.9  

 N-PLS (Only X-block) N-PLS(Only Z-block) SO-N-PLS MB-PLS SO-PLS 

Compound LV

s 

RMSCV Expl. 

Var. 

(%) 

LVs RMSCV Expl. 

Var. 

(%) 

LVs RMSCV Expl. 

Var. 

(%) 

LVs RMSCV Expl. 

Var. 

(%) 

LVs RMSCV Expl. 

Var. 

(%) 

Valine-

Tyrosine-Valine 

3 0.59 97 2 0.74 96 2,2 0.19 99 3 0.19 99 2,4 0.14 99 

Tryptophan-

Glycine 

2 0.20 99 2 0.86 96 2,2 0.12 100 3 0.15 99 3,5 0.11 100 

Phenylalanine 2 0.30 98 2 0.91 95 1,2 0.26 99 3 0.26 99 3,4 0.21 98 

Maltoheptaose 1 2.00 84 2 0.15 99 1,2 0.14 99 2 0.14 99 3,2 0.12 100 

Propanol 1 2.22 84 2 0.7 96 2,2 0.51 97 5 0.20 99 1,5 0.09 100 

Table(s)



Table 3: Averaged (over the 10 replicates) RMSECVs and number of components from SO-N-PLS, MB-PLS and SO-PLS models 
after the addition of 50% random noise to   and  . 

 

Table 4: Lambrusco Data set: Classification errors by single-block and multi-block methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 Butter data set: number of Latent variables (LVs) selected, RMSECVs and Explained variances for the prediction of 
the acidic odour attribute.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 SO-N-PLS MB-PLS SO-PLS 

Compound RMSCV # components RMSCV # components RMSCV # components 

X Z Z Z 

Valine-Tyrosine-Valine 0.31 1.3 2.0 0.32 4.0 0.50 1.5 5.1 

Tryptophan-Glycine 0.13 1.2 2.0 0.49 3.8 0.22 3.3 5 

  Phenylalanine 0.24 1.4 2.0 0.38 4.1 0.25 1.9 2.9 

Maltoheptaose 0.14 1.4 2.0 0.15 3.3 0.17 1.9 5.0 

Propanol 0.72 1.5 2.0 0.55 4.1 0.75 1.0 5.4 

Method LVs: Miscl. 

Grasparossa  

Misclassified 

Salamino  

Misclassified 

Sorbara  

Tot.Error (%) 

N-PLS-LDA  

(Only   ) 

3 7 4 3 24 

PLS-LDA (Only 

Z) 

3 16 13 5 59 

SO-N-PLS-LDA 2,4 7 4 3 24 

MB-PLS-LDA 6 6 7 2 26 

SO-PLS-LDA 2,4 6 5 3 24 

Method LVs: RMSECV Explained 

Variance (%) 

N-PLS (Only   ) 4 0.71 83 

PLS (Only    ) 5 0.58 88 

SO-N-PLS 2,2 0.56 88 

MB-PLS 4 0.58 88 

SO-PLS 2,4 0.53 88 



Table 6: Sugar process data set: number of Latent variables (LVs) selected, RMSECVs and Explained variances for the 
prediction of the sugar colour.  

 

 Method LVs: RMSEP Explained 

Variance (%) 

N-PLS (Only   ) 3 2.27 77 

PLS (Only    ) 1 4.3 15 

SO-N-PLS 2,1 2.23 78 

MB-PLS 3 2.36 75 

SO-PLS 3,1 2.11 80 
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