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Abstract

Selecting the correct number of factors in Principal Component Analysis (PCA) is a critical step to achieve a rea-

sonable data modelling, where the optimal strategy strictly depends on the objective PCA is applied for. In the last

decades, much work has been devoted to methods like Kaiser’s eigenvalue greater than 1 rule, Velicer’s minimum

average partial rule, Cattell’s scree test, Bartlett’s chi-square test, Horn’s parallel analysis, and cross-validation. How-

ever, limited attention has been paid to the possibility of assessing the significance of the calculated components via

permutation testing. That may represent a feasible approach in case the focus of the study is discriminating relevant

from non-systematic sources of variation and/or the aforementioned methodologies cannot be resorted to (e.g. when

the analysed matrices do not fulfill specific properties or statistical assumptions).

The main aim of this article is to provide practical insights for an improved understanding of permutation testing,

highlighting its pros and cons, mathematically formalising the numerical procedure to be abided by when applying it

for PCA factor selection by the description of a novel algorithm developed to this end, and proposing ad hoc solutions

for optimising computational time and e�ciency.
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1. Introduction

Principal Component Analysis (PCA) [1, 2] is probably the most commonly used multivariate

statistical tool to compress, describe and interpret large sets of data. Its basic principle can be

summarised as follows: let X be a N ⇥ J matrix with J denoting the number of variables (e.g. J

sensor responses monitored during an industrial process or J metabolites quantified in biological

samples) registered for each of N measurements performed, for instance, at N time instants or for

N di↵erent individuals. In the modern instrumental context, where J might be very large, the useful

and meaningful information in X is usually intercorrelated among various of these variables over

the whole set of recordings. Under this assumption, for a chosen degree of acceptable accuracy,

it is possible to reduce the J-dimensional space of the original descriptors to an A-dimensional

subspace, onto which all the N objects under study can be projected and represented as new points.

Mathematically speaking, PCA is based on the bilinear structure model in Eq. 1:

X = 1mT + TPT + E (1)

where 1 (N ⇥ 1) is a vector of ones, m (J ⇥ 1) contains the mean values of the J variables in X,

P (J ⇥ A) is an array of so-called loadings, which determine the A basis vectors (components or

factors) of the PCA subspace, T (N ⇥ A) defines the projection coordinates or scores of all the

N rows of X on this lower-dimensional space and E (N ⇥ J) stands for the matrix of unmodelled

residuals, i.e. the portion of X not explained at the chosen rank, A.

When deriving a PCA decomposition a very critical point is how to properly set A. First of all, it

is important to notice that, as stated in [3–5], this assessment connotes an ill-posed problem if for-

mulated without taking into account for which objective PCA is resorted to. In [5] Camacho and

Ferrer di↵erentiated three di↵erent application scenarios: i) when the interest is on the observable

or original variables; ii) when the interest is on the principal components; iii) when the interest

is on the distributions of the principal components and residuals. i) refers to situations in which

the dimensionality of the PCA subspace has to be determined so that the model-based reconstruc-

tion of the original variables is the most accurate possible (e.g. for compression or missing value

imputation). ii) mainly relates to data exploration, which normally implies the extraction of all

the principal components that can be safely interpreted because they are su�ciently di↵erent from
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noise. iii) basically concerns statistical process monitoring, where the distributions of the prin-

cipal components and residuals, calculated from a set of data collected under Normal Operating

Conditions (NOC), are utilised to assess whether such NOC are maintained over time or a fault is

occurring. Here, the main focus will be on ii). However, in all these circumstances, if no a priori

knowledge about the investigated systems is available, A has to be empirically retrieved [6].

1.1. Strategies for principal component selection

During the last decades many approaches for principal component selection have been de-

veloped, which can be classified in three distinct categories: ad hoc rules, statistical tests and

computational criteria [7]. Ad hoc rules (like Kaiser’s eigenvalue greater than 1 rule [8], Velicer’s

minimum average partial rule [9] and Cattell’s scree test [10]) and statistical tests (like Bartlett’s

chi-square test [11] and Tracy-Widom statistic-based test [12]) generally show a particular draw-

back: they often constitute case-specific strategies, not easily generalisable for handling data struc-

tures of various nature, and sometimes are based on distributional assumptions, which are rarely

met in modern analytical contexts. On the other hand, computational criteria are completely data-

driven and distribution-free. Therefore, they can be regarded as feasible options when ad hoc

rules and statistical tests cannot be applied (for instance when the considered datasets do not fulfill

particular mathematical properties), even if they might sometimes lead to an excessive time and

memory consumption.

Computational criteria encompass both cross-validation and permutation test-based techniques

(like Horn’s parallel analysis [13] and a data dimensionality detection methodology proposed by

Dray in [14]). Although cross-validation is probably the most widespread principal component

selection approach, its application is not recommended when the objective of the study is dis-

criminating relevant from noisy factors [5]. In fact, as it permits to determine the dimensionality

of the PCA subspace by minimising the prediction error between the initial data and their PCA

estimates, it is evidently better-suited for the applications covered by the aforementioned scenario

i). On the contrary, when the systematic and non-systematic sources of variation in the data have

to be di↵erentiated and/or stable loadings and residuals distributions are desired, the focus moves

from the original variables to the principal components. In similar contingencies the employment
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of cross-validation may not be adequate: procedures aimed at determining the statistical signifi-

cance of the principal components or at minimising the Overall Type II (OT II) risk when process

monitoring is concerned may be required.

Permutation test-based techniques rely on the comparison of some attributes of the analysed data

matrices with those of arrays characterised by uncorrelated variables. These attributes are conven-

tionally: i) the singular values or the eigenvalues (the square of the singular values) or ii) functions

of the eigenvalues (e.g. the di↵erence or the ratio between consecutive eigenvalues). Based on

this, it is clear that these methods directly concentrate on the identification of structured inter-

pretable components and might represent appropriate alternatives to cross-validation when PCA

is exploited for such an exploratory purpose [14–20].

For all these reasons, in this article, an extensive guideline on how to select the number of PCA

factors by permutation tests is provided. Concretely, a novel algorithm designed to this end and

originated from the preliminary proposal outlined in [21] is presented. It will be compared to other

permutation test-based strategies (i.e. Horn’s parallel analysis and Dray’s approach, described in

Appendices A and B, respectively), which will permit to point out some of their limitations that,

as far as the authors are aware, were only partly spotted before in the scientific literature. So-

lutions for overcoming these limitations will be additionally reported. The practical aspects of

this algorithm will be examined for a better understanding of its pros over its primary version and

possible adjustments for optimising the e�ciency of its computational procedure (in terms of time

and memory consumption) will also be discussed.

2. Methods

A new algorithm for PCA component selection by permutation testing is here introduced. Let

X be now a centred data matrix of N rows and J columns with rank Q = min{N � 1, J}. This novel

computational procedure rests on the estimation of the statistical significance of the eigenvalues

of XTX (�) against the null-hypothesis (H0) that the mechanism generating the columns of X is

nothing but random noisei. It comprises the following 10 steps grouped in three consecutive phases

iAs observed before and according to the taxonomy suggested in [7], this algorithm can be regarded as a method-

ology that takes as input the eigenvalues of the data covariance matrix to discern structured information from noise.
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(see also Figure 1):

• Phase I - Singular Value Decomposition of X:

1. Perform Singular Value Decomposition (SVD) on X:

X = USVT = TPT (2)

where U (N ⇥N) and V (J ⇥ J) contain the left and right singular vectors of X, respec-

tively, and S (N ⇥ J) is a rectangular diagonal array whose non-zero diagonal elements

are its singular values (
p
�1,
p
�2, . . . ,

p
�Q);

2. Compute for each a-th calculated component the ratio:

Fa =
�aPQ

q=a �q
(3)

where �a corresponds to the a-th eigenvalue obtained after the decomposition of X.

Fa is used for testing the statistical significance of the single factors. It equals the ratio

between the amount of variation explained by the a-th component and the total amount

of variation captured by the last Q � (a � 1) components.

• Phase II - Test for the first component:

3. For a = 1, randomly and independently permute the order of the entries within every

column of X constructing a new matrix Xperm, featuring uncorrelated variables;

4. Apply SVD to Xperm and calculate the ratio:

F1,perm =
�1,perm

PQ
q=1 �q,perm

(4)

where �1,perm denotes the first eigenvalue obtained after the decomposition of Xperm.

Note that the sum of squares of X and Xperm is exactly the same, despite the permuta-

tions;

5. Iterate step 3 and 4 to generate a null-distribution for F1,perm
ii. If F1 is found to be

higher than its (1 � ↵) ⇥ 100th percentile (↵ equals the nominal Overall Type I - OT I

iiThe total number of iterations is a user-defined parameter and should be selected so as to obtain a precise estima-

tion of such a null-distribution.
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Figure 1 - Schematic representation of the permutation-based algorithmic procedure proposed in this article. A PCA

component is considered statistically significant if its respective Fa value is higher than the (1 � ↵) ⇥ 100th percentile

of the associated null-distribution, being ↵ the nominal Overall Type I (OT I) risk value imposed to the test, i.e. its

false positive rate
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- risk value imposed to the test, i.e. its false positive rate), the first component is

considered statistically significant.

• Phase III - Test for the a-th component (a > 1):

6. For a > 1, calculate the residual matrix:

Ea = X �
a�1X

q=1

uq
p
�qvT

q = X �
a�1X

q=1

tqpT
q (5)

where uq, vq, tq and pq are the q-th column vectors of U, V, T and P (see Eq. 2),

respectivelyiii. Note that after each deflation round Ea has rank Q � (a � 1);

7. Randomly and independently permute the order of the entries within each column of

Ea constructing a new matrix Ea,perm. Unlike Ea, Ea,perm has rank Q (apart from chance

deviations), but their total sums of squares are the same;

8. Calculate the projection of Ea,perm on a subspace of dimensionality Q�(a�1), Ea,perm,proj.

The way to carry out this projection represents the main novelty of this study and will

be discussed in the next section;

9. Perform SVD on Ea,perm,proj and retain the ratio:

Fa,perm,proj =
�1,perm,proj

PQ�(a�1)
q=1 �q,perm,proj

(6)

where �1,perm,proj is the first eigenvalue obtained after the decomposition of Ea,perm,proj;

10. Iterate step 7, 8 and 9 to generate a null-distribution for Fa,perm,proj
ii. If Fa is found to be

higher than its (1�↵)⇥ 100th percentile, the a-th component is considered statistically

significant.

Computations are stopped as soon as the first non-significant component is detected.

3. Numerical and practical aspects of the algorithm

Four particular aspects, which constitute the core of the algorithm, are now elucidated from

both a numerical and practical perspective: i) Why are the data permuted column-wise? ii) Why

iiiAccording to this notation a hypothetical E1 would correspond to X.
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does X need to be sequentially deflated? iii) Is the projection of Ea,perm necessary? iv) What is the

rationale behind the relative index Fa?

For the sake of a comprehensive assessment of the specific implications of how the calculations

are performed, all the tests reported in this section were run for all the extractable components,

thus not resorting to the aforementioned stopping criterion.

3.1. Permutations

In both Phases II and III of the computational procedure, X and Ea are permuted so that the or-

der of the entries within each one of their columns is independently randomised. This breaks their

underlying covariance structure, whereas the mean value and the standard deviation of the mea-

sured variables are maintained. Variances are then preserved, but the intrinsic mutual relationships

among descriptors are cluttered.

3.2. Deflation

When SVD is applied on a dataset, whose element order was permuted such that all correlation

among the measured variables is lost, its total variation will be more or less uniformly distributed

across all its extractable factorsiv. This can lead to overlooking the actual statistical significance

of some eigenvalues of XTX if they do not account for a substantially high amount of variation,

which is exactly what happens with Horn’s parallel analysis [22], as will be shown in Section 4.1.

Testing this significance with consecutive deflation steps allows this limitation to be overcome.

This is illustrated in the following example.

Say for instance that X has rank 10 and contains 80% of systematic variation in 3 components

(60%, 15% and 5%, respectively) and 20% of noise with a total sum of squares of 100. Therefore,

�1 = 60, �2 = 15 and �3 = 5. The remaining 20% of the variation of X is roughly uniformly

distributed over the other 7 eigenvalues (�q ' 2.8 8q = 4, . . . , 10). Permuting X permits to

generate a new matrix Xperm with the same sum of squares. However, as no correlation among the

ivTheoretically, the eigenvalues associated to the single factors should be identical provided that the sum of squares

of all the variables is the same. However, chance correlations generate their typical smooth descending trend observ-

able in e.g. Figure 2.
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measured variables is left, the whole amount of variation is distributed across the whole set of 10

eigenvalues (�q,perm ' 10 8q = 1, . . . , 10). As shown in Figure 2 (left), comparing �3 with its null-

distribution will not lead to detect it as statistically significant (�3 is clearly smaller than the 99th

percentile of the corresponding null-distributionv). On the other hand, if the first two components

Figure 2 - Eigenvalues (blue bars) of a simulated centred data matrix (100 ⇥ 10) containing 80% of systematic vari-

ation in 3 components (60%, 15% and 5%, respectively) and 20% of noise with a total sum of squares of 100, and

their empirically estimated null-distributions (red dots) obtained by either not deflating (left) or deflating (right) the

original array during the execution of the permutation test. Each red dot corresponds to the eigenvalue obtained for

the respective component after one of the 300 performed permutation rounds. The black markers denote the 99th

percentiles of the aforementioned null-distributions

are used to deflate X, the resulting E3 matrix will be characterised by a sum of squares of 25 and a

rank of 8. The first eigenvalue of E3,perm will be then around 25
10 ' 2.5 (shu✏ing E3 makes E3,perm

have again rank 10). In this case (see Figure 2 - right), the third factor of X will be correctly

identified as statistically significant (�3 is now larger than the 99th percentile of the corresponding

null-distribution). But, what happens with �8, �9 and �10 (see black circle in the right subplot of

Figure 2)? Are they statistically significant even if �4 to �7 are not? The root cause of this strange

inconsistency will be clarified in the next section.

vFrom now on, for all the reported applications ↵ is set equal to 0.01.
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3.3. Projection

As a consequence of the permutations, Ea and Ea,perm have always di↵erent rank (Q � (a � 1)

and Q, respectively, after each step of deflation for a > 1), but equal sum of squares. However, this

sum of squares is distributed over Q� (a� 1) non-zero eigenvalues in the former array and over Q

non-zero eigenvalues in the latter one. Hence, the expected values of �a will be on average higher

than those of �a,perm as a increases. The projection of Ea,perm on a hyperplane of dimensionality

Q � (a � 1) can correct for this e↵ect. In the approach proposed in [21] this projection is executed

both row-wise and column-wise as:

Ea,perm,proj = (IN �
a�1X

q=1

uquT
q )Ea,perm(IJ �

a�1X

q=1

vqvT
q ) (7)

where IN is an identity matrix of dimensions N ⇥ N and IJ is an identity matrix of dimensions

J ⇥ J. Equation 7 (referred to as P1 from now on) guarantees that both the row and column space

of Ea,perm,proj are identical to those of the original residuals, Ea. Therefore, in [21] it was regarded

as the most natural and intuitive way to project Ea,perm. P1 proved to be a feasible option when

small sets of data were dealt with, but if N and/or J are/is very large, the calculation of the inner-

product arrays
Pa�1

q=1 uquT
q (N⇥N) and/or

Pa�1
q=1 vqvT

q (J⇥J) can be rather expensive in computational

terms. An alternative strategy (referred to as P2vi) could be projecting Ea,perm onto the hyperplane

orthogonal to the first a � 1 components of X using their either left or right singular vectors:

Ea,perm,proj = (IN �
a�1X

q=1

uquT
q )Ea,perm (8)

P2 would be significantly faster from a computational point of view, but would allow only the row

or the column spaces of Ea,perm,proj and Ea to be the same.

P1 and P2 lead to di↵erent Ea,perm,proj matrices (a single row-wise or column-wise projection as in

P2 reduces the sum of squares of Ea less than a double projection as in P1), which nevertheless

share the same rank, Q � (a � 1). This permits to compare them in this particular application

viFormulas 8 and 9 relate to the case in which N < J and define a row-wise projection. If N > J, a column-wise

projection can be performed resorting to the column vectors of V/VEa,perm instead of those of U/UEa,perm , thus preventing

excessive time and memory consumption.
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scenario and check whether they enable the derivation of reasonable null-distributions for the

concerned permutation test. Specifically, for each projection approach:

1. 300 matrices of size 51 ⇥ 200 containing random values drawn from the standard normal

distribution were simulated;

2. after preprocessing, the algorithm reported in Section 2 was run on each one of these ma-

trices to determine the statistical significance of all their 50 extractable components. 300

permutation rounds per matrix were performed;

3. once every test was completed, a single p-value per component was derived as the ratio

between the number of F1,perm (if a = 1) or Fa,perm,proj (if a > 1) found to be higher than the

corresponding Fa and the total number of permutations;

4. the p-values associated to each component were finally averaged over the 300 simulated

matrices.

Figure 3 displays the outcomes of this assessment (left and central subplots). Here, both P1 and

P2 exhibited very similar performances, generally leading to p-values close to 1, which, as also

Figure 4 (left and central subplots) confirms, are rendered by the fact that the Fa,perm,proj values

(for a > 1) of the various empirical null-distributions are systematically larger than expected when

quantified by P1 and P2. Such an overestimation is probably a consequence of the fact that Ea,perm

is projected onto the subspace spanned by Ea that still describes part of the systematic structure

of the handled data (this structure is spurious but anyway present also in random matrices). As

a thought experiment, say one draws a shape (a principal component) in the sand (the original

data space) and removes (deflates) all the grains inside its borders. The remainder of the sand (the

residual space) will be a negative of the shape and will thus keep memory of its contour, inevitably

influencing the disposition of hypothetical new grains randomly distributed over it. For the same

reason, the aforementioned projection might generate chance covariance in Ea,perm,proj and then a

substantial increase in the corresponding Fa,perm,proj ratios. This should be even more evident when

structured data are dealt with. In order to overcome this issue, P3 is proposed. By P3, Ea,perm is
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Figure 3 - Mean p-values obtained for the 50 components extractable, after preprocessing, from 300 simulated random

value matrices of dimensions 51 ⇥ 200 by exploiting the 3 di↵erent projection strategies under comparison. Each bar

quantifies the ratio, averaged over the 300 simulations, between the number of F1,perm (if a = 1) or Fa,perm,proj (if

a > 1) found to be higher than the corresponding Fa and the total number of permutation rounds (300 per matrix).

The horizontal red dotted line is drawn at p�value = 0.5

projected onto the hyperplane orthogonal to its first a � 1 componentsvi:

Ea,perm,proj = (IN �
a�1X

q=1

uq,Ea,permuT
q,Ea,perm

)Ea,perm (9)

where Ea,perm = UEa,permSEa,permVT
Ea,perm

, and being uq,Ea,perm the q-th column vector of UEa,perm . At each

permutation round, Ea,perm is subjected to SVD and a new subspace is estimated from random

residuals for the projection to limit the e↵ect of the chance covariance induced by P1 and P2. As

no notable di↵erences were observed between the performance of P1 and P2, P3 was implemented
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Figure 4 - Fa ratios (blue bars) and related empirical null-distributions (red dots) associated to the first 30 components

of a simulated 51 ⇥ 200 random value matrix and resulting from P1, P2 and P3. Each red dot corresponds to the

F1,perm (if a = 1) or the Fa,perm,proj (if a > 1) estimate obtained for the respective factor after one of the 300 performed

permutation rounds. The black markers denote the 99th percentiles of the aforementioned null-distributions
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so that the projection is carried out either row-wise or column-wisevii. It is also worth noting that

P3 yields the largest loss of data variation. Figures 3 and 4 also show the results of the previous

study obtained when P3 was used (right subplots): as expected it returned better guesses of the

null-distributions than those resulting from P1 and P2. In the light of all that, only P1 and P3 will

be employed for comparison in the further case-studies illustrated in this article.

The projection of Ea,perm represents the main advantage of this novel algorithm over Dray’s ap-

proach [14], which progressively deflates X as new factors are extracted, but does not take into

account the change of the rank of the matrices of the permuted residuals. This commonly gen-

erates very inconsistent outcomes: as a increases, the null-distributions associated to the single

components are gradually more underestimated and the method is continuously more prone to

detect noisy factors as statistically significant (see Section 4.1 for further details). This issue was

originally solved by making the sequential computational procedure stop just after the identifi-

cation of the first non-significant factor. However, for the properties of the statistic used for the

testing procedure, Dray’s method generally recognises less significant components than expected

(see Appendix B).

3.4. The rationale behind Fa

The projection of Ea,perm yields a decrease in its sum of squares. Then, the eigenvalues of

Ea and Ea,perm,proj are not directly commensurable. As a solution to this issue, the statistical sig-

nificance of each specific factor is tested through a relative measure, i.e. the ratio between the

respective eigenvalue and its sum with all the smaller ones. In fact, since such a projection modi-

fies at the same time and more or less uniformly the whole set of eigenvalues of Ea,perm, this ratio

is negligibly a↵ected by the aforementioned decrease in its total sum of squares.

viiNevertheless, P3 allows both the row- and the column-spaces of Ea,perm and Ea,perm,proj to be the same no matter

if the projection is performed either row-wise or column-wise.

14



4. Performance of the algorithm

4.1. Synthetic datasets

Four synthetic matrices were exploited to verify whether the number of their underlying com-

ponents (known a priori) could be correctly retrieved by the developed methodology. The data

generation design was first detailed in [5]: 4, 8, 12 and 15 principal components, simulated in-

dependently at random and following a normal distribution with zero mean and unit variance,

were respectively exploited to calculate a certain amount of observed variables according to the

equations listed in Table 1. All the final arrays, featuring 100 objects, are examples of di↵erent

correlation structures (from industrial process-like to spectral-like) and were contaminated with

measurement noise of diverse magnitude (from 5 to 100% of the global variation of the noise-free

data) to get an idea about the robustness of the implemented approach. Table 2 shows how many

factors were retained at each noise level for the 4 datasets (for Horn’s parallel analysis, Dray’s

method and both P1 and P3). The displayed values represent the median and the range of the

number of selected components estimated over 300 simulation replicates. Clearly, P3 generally

enabled an accurate identification of the number of significant components. Nevertheless, from

a certain noise level on, depending on the nature of the considered covariance structure, the pro-

cedure more often tended to be less sensitive, but this is reasonable considering that noise covers

successively more the less predominant factors and prevents them to be correctly pointed out as

statistically significant.

On the other hand, regarding the last data matrix, the general overestimation of the number of

components was not unexpected. In fact, as stressed in [5], in this particular circumstance and

even for very small noise percentages, a notable portion of the variation of the last two factors gets

lost in the residuals. Thus, it is di�cult to conclude if the actual data dimensionality is either equal

to or higher than 15.

Concerning P1, it commonly gave rise to a more conservative selection. In fact, as also evidenced

by the comparison reported in Section 3.3, it allows only the major principal components to be

appropriately recognised.

Finally, the outcomes resulting from the application of Horn’s parallel analysis and Dray’s method
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Table 1 - Generation scheme of the 4 synthetic datasets. x identifies the observed variables, while pc denotes the principal components exploited for their

simulation

Dataset #ID Number of principal components Number of original variables Data generation scheme

1 4 10

xi =
q

i
5 pc1 +

q
1�i
5 pc2 8i 2 1, . . . , 5

xi =
p

0.5pc1 +
q

i
10�0.5 pc2 +

q
1�i
10 pc3 8i 2 6, . . . , 9

x10 =
p

0.01pc1+
p

0.01pc2+
p

0.01pc3+pc4p
1.03

2 8 10

xi =
p

0.5pck +
p

0.5pcl 8i 2 1, . . . , 6 8k , l 2 1, . . . , 4

xi =
p

0.5pck +
p

0.5pcl 8i 2 7, 8, 9 8k , l 2 5, 6, 7

x10 = pc8

3 12 27
xi = pci 8i 2 1, . . . , 12

xi =
p

0.5pck +
p

0.5pcl 8i 2 13, . . . , 27 8k , l 2 1, . . . , 6

4 15 50

xi =
p

0.5pck +
p

0.5pcl 8i 2 1, . . . , 45 8k , l 2 1, . . . , 10

x46 = pc11

x47 = pc12

x48 =
p

0.5pc11 +
p

0.5pc13

x49 =
p

0.5pc12 +
p

0.5pc14

x50 = pc15
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Table 2 - Median value and range of the number of components retained at each noise level for the 4 synthetic datasets (estimated over 300 simulation

replicates for Horn’s parallel analysis, Dray’s method and both P1 and P3). Their real number of factors is reported in the second column. Bold characters

point out a correctly addressed assessment. Dray’s computational procedure was stopped just after the detection of the first non-significant factor

Dataset #ID Noise level⇤ Real number of components/Number of original variables Number of estimated components

Horn’s parallel analysis Dray’s method P1 P3

1

5% 4/10 1 [1 � 1] 1 [1 � 1] 1 [1 � 4] 4 [4 � 4]

10% 4/10 1 [1 � 1] 1 [1 � 2] 1 [1 � 5] 4 [4 � 5]

15% 4/10 1 [1 � 1] 1 [1 � 4] 1 [1 � 4] 4 [4 � 4]

20% 4/10 1 [1 � 1] 1 [1 � 4] 1 [1 � 4] 4 [1 � 4]

25% 4/10 1 [1 � 1] 1 [1 � 5] 1 [1 � 4] 4 [1 � 4]

50% 4/10 1 [1 � 1] 1 [1 � 4] 1 [1 � 4] 4 [1 � 4]

75% 4/10 1 [1 � 1] 1 [1 � 3] 1 [1 � 3] 2 [1 � 4]

100% 4/10 1 [1 � 1] 1 [1 � 3] 1 [1 � 2] 1 [1 � 4]

2

5% 8/10 2 [2 � 4] 2 [1 � 5] 2 [2 � 6] 8 [2 � 8]

10% 8/10 2 [2 � 4] 2 [1 � 10] 2 [2 � 6] 7 [2 � 9]

15% 8/10 2 [2 � 4] 2 [1 � 10] 2 [1 � 6] 6 [2 � 8]

20% 8/10 2 [1 � 4] 2 [1 � 6] 2 [1 � 6] 6 [2 � 9]

25% 8/10 2 [1 � 4] 2 [1 � 6] 2 [1 � 5] 5 [1 � 8]

50% 8/10 2 [1 � 4] 2 [1 � 4] 2 [1 � 3] 3 [1 � 8]

75% 8/10 2 [0 � 4] 2 [0 � 10] 2 [0 � 3] 2 [0 � 6]

100% 8/10 2 [0 � 4] 1 [0 � 3] 1 [0 � 3] 2 [0 � 5]

3

5% 12/27 6 [6 � 6] 6 [4 � 6] 6 [6 � 7] 12 [5 � 12]

10% 12/27 6 [6 � 7] 6 [4 � 7] 6 [6 � 7] 12 [5 � 12]

15% 12/27 6 [6 � 7] 6 [5 � 7] 6 [5 � 7] 12 [5 � 12]

20% 12/27 6 [5 � 7] 6 [4 � 7] 6 [5 � 6] 12 [5 � 12]

25% 12/27 6 [5 � 7] 6 [4 � 7] 6 [5 � 7] 12 [5 � 12]

50% 12/27 6 [5 � 7] 6 [3 � 7] 6 [5 � 7] 12 [5 � 13]

75% 12/27 6 [4 � 7] 6 [2 � 6] 6 [4 � 6] 12 [5 � 14]

100% 12/27 6 [4 � 7] 5 [1 � 6] 5 [3 � 6] 10 [5 � 14]

4

5% 15/50 10 [10 � 11] 12 [8 � 17] 12 [10 � 15] 16 [15 � 19]

10% 15/50 10 [9 � 11] 12 [9 � 17] 12 [10 � 15] 16 [15 � 21]

15% 15/50 10 [9 � 11] 12 [8 � 16] 12 [10 � 16] 16 [14 � 21]

20% 15/50 10 [9 � 11] 12 [7 � 18] 12 [10 � 15] 17 [14 � 21]

25% 15/50 10 [9 � 11] 12 [9 � 16] 12 [9 � 15] 17 [14 � 21]

50% 15/50 10 [8 � 11] 11 [9 � 14] 10 [9 � 13] 17 [13 � 24]

75% 15/50 10 [7 � 11] 10 [6 � 13] 10 [7 � 12] 16 [13 � 23]

100% 15/50 9 [7 � 11] 10 [7 � 13] 10 [7 � 11] 16 [12 � 24]
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to the 4 synthetic datasets (also displayed in Figures SM1 and SM2, respectively) corroborate

what was stated before about their respective limitations: in fact, both of them always overlooked

some components of the original data structures. Furthermore, in all four cases, if the first non-

significant component was not used as stopping rule, Dray’s method would have been prone to

detect their last factors as statistically significant (see Figure SM2)viii. In this sense, it can be said

that here the proposed permutation test-based procedure (encompassing the P3 step) outperformed

these two approaches.

4.2. Real case-studies

The developed algorithm was also applied to 10 real datasets from distinct research fields,

from archaeology to food preference. The purpose was to illustrate the di↵erent results for the

concerned approaches, not to discuss them in great detail. For some of these datasets, based on

the findings described in the original publications, a putative number of underlying components

could be identified. The outcomes for both P1 and P3 are reported in Figure 5, while those for

Horn’s parallel analysis and Dray’s method are graphed in Figures SM3 and SM4 (see Table 3 for a

comprehensive summary). Notice that i) all the methods were run on the auto-scaled data matrices

with a 99% confidence level and performing 300 permutation rounds; ii) Dray’s computational

procedure was stopped just after the detection of the first non-significant factor. When information

was available on the actual dimensionality of the data, P3 always permitted to retrieve the correct

number of components. On the other hand, Horn’s parallel analysis and Dray’s method generally

led to more conservative selections. In 4 out of 10 situations, P1 returned similar results as P3,

probably because the significant components were large enough to limit the e↵ect related to the

di↵erent projection procedures pointed out in Sections 3.3 and 4.1. However, that is not valid for

the other real case-studies where P1 yielded an underestimated number of factors with respect to P3

(see e.g. the performance of the 2 methodologies when the juice sensory array was handled)ix. In

viiiFigures SM1 and SM2 are simply illustrative examples related to a single simulation replicate (noise level: 5%).

However, the performance of the two concerned techniques was found to be consistent regardless of both noise

percentage and data generation repetition.
ixFor all the datasets, the 99th percentile front resulting from P1 was found to be higher (as expected) than that

obtained when P3 was concerned.
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Figure 5 - Results of the application of the P1- and P3-based permutation tests to the 10 real datasets. The blue bars

indicate the Fa ratios used for the testing procedure and associated to the single components of the original matrices

under study, while the green dots (for P1) and the red triangles (for P3) correspond to the 99th percentiles of their

respective null-distributions generated after 300 permutations
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the light of that and although the actual dimensionality of some of the matrices taken into account

was not known, the P3-based permutation test seemed to enable a more appropriate identification

of how many principal components to extract in the di↵erent scenarios. It is true that sometimes

more conservative selections may be safer especially when factors accounting for small amounts

of data variation are detected as statistically significant (in this sense, the eigenvalues of XTX,

used for the Horn’s parallel analysis testing procedure, can be helpful to additionally evaluate this

aspect). But rather often phenomena of interest are just captured by such small components, and,

thus, a tool being able to systematically unveil them can definitely be of use for many disparate

applications.

5. Conclusions

In this paper, an extensive guideline on how to accomplish the selection of PCA components

by permutation testing was provided through the description of a novel and e�cient algorithm.

Its most relevant aspects were discussed and clarified, namely the way the considered covariance

structures are randomised, the importance of sequentially deflating the original matrix once every

factor is computed, the necessity of a relative measure, the Fa ratio, to estimate their statistical

significance and the need of a projection after each permutation round. This also permitted to

mathematically formalise all the single numerical operations required when trying to quantify the

number of factors underlying particular sets of data in this fashion. Furthermore, the application

of the proposed method to both simulated and real case-studies highlighted that it can constitute a

feasible and valid alternative to classical permutation test-based approaches such as Horn’s parallel

analysis and Dray’s method, which exhibit specific limitations mainly related to their intrinsic

mathematical procedures. The possibility of employing it for e↵ective rank identification prior

to multi-set data analysis by means of e.g. Canonical Correlation Analysis [33] or Joint and

Individual Variation Explained [34] will be explored in future research.
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Appendix A. Horn’s parallel analysis

Horn’s parallel analysis [13] is a Monte Carlo-based approach, whose basic idea is to com-

pare the eigenvalues of the covariance matrix resulting from the data array under study with their

sampling distribution, obtained simulating uncorrelated variables. A factor or component is re-

tained if its respective eigenvalue is larger than e.g. the 99th percentile of its sampling distribution.

Since the 70s, Horn’s parallel analysis has been often considered the best available option for PCA

component selection in psychometrics [35–39].

Appendix B. Dray’s method

In its most e�cient form [14], Dray’s method encompasses the following 9 algorithmic steps

grouped in three consecutive phases:

• Phase I - Singular Value Decomposition of X:

1. Perform Singular Value Decomposition (SVD) on X:

X = USVT = TPT (B.1)

where U (N ⇥N) and V (J ⇥ J) contain the left and right singular vectors of X, respec-

tively, and S (N ⇥ J) is a rectangular diagonal array whose non-zero diagonal elements

are its singular values (
p
�1,
p
�2, . . . ,

p
�Q);

2. Compute for each a-th calculated component the so-called RVDIM statistic:

RVDIMa =
�aqPQ
q=a �

2
q

(B.2)
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where �a corresponds to the a-th eigenvalue obtained after the decomposition of X.

RVDIMa is used for testing the statistical significance of the single factors.

• Phase II - Test for the first component:

3. For a = 1, randomly and independently permute the order of the entries within every

column of X constructing a new matrix Xperm, featuring uncorrelated variables;

4. Apply SVD to Xperm and calculate the RVDIM index for the first extracted component:

RVDIM1,perm =
�1,permqPQ
q=1 �

2
q,perm

(B.3)

where �1,perm denotes the first eigenvalue obtained after the decomposition of Xperm;

5. Iterate step 3 and 4 to generate a null-distribution for RVDIM1,perm. If RVDIM1 is

found to be higher than its (1� ↵)⇥ 100th percentile, the first component is considered

statistically significant.

• Phase III - Test for the a-th component (a > 1):

6. For a > 1, calculate the residual matrix:

Ea = X �
a�1X

q=1

uq
p
�qvT

q = X �
a�1X

q=1

tqpT
q (B.4)

where uq, vq, tq and pq are the q-th column vectors of U, V, T and P (see Eq. B.1),

respectively;

7. Randomly and independently permute the order of the entries within each column of

Ea constructing a new matrix Ea,perm. As specified in Section 2, unlike Ea, Ea,perm has

rank Q;

8. Perform SVD on Ea,perm and retain:

RVDIMa,perm =
�1,permqPQ
q=1 �

2
q,perm

(B.5)

where �1,perm is the first eigenvalue obtained after the decomposition of Ea,perm;
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9. Iterate step 7 and 8 to generate a null-distribution for RVDIMa,perm. If RVDIMa is

found to be higher than its (1�↵)⇥ 100th percentile, the a-th component is considered

statistically significant.

The original procedure additionally includes a sequential Bonferroni correction for multiple testing

to limit the increase of the Type I error and automatically stops as soon as the first non-significant

factor is detected.

It is worth noting that, as detailed in [14], RVDIMa measures the similarity between the original

data reconstruction X̂a = ua
p
�avT

a (where ua/va represents the a-th left/right singular vectors of

X) and Ea. The higher this similarity, the higher the content of relevant information that the a-th

component carries.

For the properties of the RVDIM statistic, Dray’s method is generally prone to recognise less

significant components than expected. In fact, RVDIMa and RVDIMa,perm (for a = 1, . . . ,Q)

are inversely proportional to the terms
qPQ

q=a �
2
q and

qPQ
q=1 �

2
q,perm, respectively, where �q corre-

sponds to the q-th eigenvalue obtained after the decomposition of X, and �q,perm denotes the q-th

eigenvalue obtained after the decomposition of Xperm (if a = 1) or Ea,perm (if a > 1). For each a,
PQ

q=a �q and
PQ

q=1 �q,perm are identical, but that is not the case for
PQ

q=a �
2
q and

PQ
q=1 �

2
q,perm owing to

the redistribution of the total variation of X (if a = 1) or Ea (if a > 1) induced by the permutation of

their elements, which modifies the single values of �q,perm with respect to those of �q. On average,
qPQ

q=1 �
2
q,perm is lower than

qPQ
q=a �

2
q when components accounting for relatively large amounts

of data variation are still to be deflated. Consequently, for small a, the values of RVDIMa,perm may

be overestimated, giving rise to a too conservative selection.
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Figure SM1 - Results of the application of Horn’s parallel analysis to the 4
synthetic datasets (noise level: 5%). The blue bars indicate the eigenvalues
of the covariance matrices associated to the arrays under study, while the red
dots correspond to the 99th percentiles of their respective null -distributions
generated after 300 permutations
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Figure SM2 - Results of the application of Dray’s method to the 4 synthetic
datasets (noise level: 5%). The blue bars indicate the RVDIMa values used
for the testing procedure (see Appendix B for further details) and associated
to the single components of the original matrices under study, while the red
dots correspond to the 99th percentiles of their respective null -distributions
generated after 300 permutations

3



Figure SM3 - Results of the application of Horn’s parallel analysis to the
10 real datasets. The blue bars indicate the eigenvalues of the covariance
matrices associated to the arrays under study, while the red dots correspond
to the 99th percentiles of their respective null -distributions generated after
300 permutations
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Figure SM4 - Results of the application of Dray’s method to the 10 real
datasets. The blue bars indicate the RVDIMa values used for the testing
procedure (see Appendix B for further details) and associated to the single
components of the original matrices under study, while the red dots corre-
spond to the 99th percentiles of their respective null -distributions generated
after 300 permutations
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