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Abstract 14 

A system for on-line sorting of meat trimmings into categories with different fat levels was developed 15 

and tested by simulations and pilot-plant trials. The system consists of a conveyor belt, a NIR imaging 16 

scanner (QV500, Tomra Sorting Solutions, Asker, Norway), a flow weigher and grader (both Marel hf, 17 

Iceland) and a host computer containing synchronizing software and a sorting algorithm. The sorting 18 

algorithm is based on desirability functions, which makes it flexible when it comes to selecting 19 

number of categories, target values, limits for deviations and other restrictions. The results showed 20 

that the sorting algorithm works when the fat measurements are accurate, giving deviations from 21 

target lower than the selected ±1 percentage point limits. In reality there are some inaccuracies in 22 

the on-line fat measurements due to inhomogeneous meat trimmings. This leads to a systematic 23 

under-estimation of the fat percentage in low-fat categories and over-estimation in the high-fat 24 

categories. These biases can be reduced by e.g. improving the on-line fat measurement technology. 25 

However, simulations showed that the bias for either category was generally low (below 2 26 

percentage points) and the current system therefore has potential for on-line implementation. 27 

1 Introduction 28 

In all abattoirs, most operations along the production line rely on manual handling or decision 29 

making to some extent.  After manual extraction of high value parts of the carcass, a significant part 30 

of the meat, hereafter called trimmings, is separated into typically 2 or 3 classes of meat, according 31 

to fat content. Generally, there is a great difference in the value of the different fat classes, with the 32 



lean meat in the high cost end and the fat in the low cost end. Thus, it is economically beneficial to 33 

be as close as possible to the target fat value. The fat content of these classes is normally estimated 34 

using a combination of visual inspection and anatomical location. For improved process control, the 35 

trimmings are in many cases ground to enable instrumental fat determination and then standardised 36 

upon further processing. In order to minimise the number of processing steps and handling of the 37 

raw material, for the purpose of optimising the technical quality of the meat, it is of great interest to 38 

the industry to be able to analyse, sort and standardise the trimmings without grinding the meat.  39 

Meat trimmings are highly heterogeneous, they vary in size, shape, chemical composition and 40 

structure. On-line estimation of fat content in single trimmings is therefore challenging. To obtain as 41 

representative measurements as possible, it is desirable to measure as large a part of the sample as 42 

possible. X-ray systems have been introduced for determination of fat in single trimmings (for 43 

example SensorX by Marel hf, Iceland). An advantage of X-rays is that the measurements are done in 44 

transmission so that the entire volume of the meat is sampled. This enables precise fat estimates (±1 45 

percentage point, www.marel.com) for heterogeneous materials. Near-infrared spectroscopy (NIR) is 46 

another technology, which is a rapid, versatile and robust tool for online fat analysis. With NIR it is 47 

not possible to measure through meat cuts of greater thicknesses than 20-30 mm. There is, however, 48 

instrumentation on the market that can give spectral images of the whole surface, where the surface 49 

is representative of approximately the top 15-20 mm of the sample. The technology is based on a NIR 50 

imaging scanner, and the measurement principle used is contact-free interactance. The instrument 51 

was originally developed for moisture determination in dried salted cod (Wold et al. 2006), and has 52 

been used for a variety of applications in the food industry (O’Farrell et al. 2010; Segtnan et al. 2009; 53 

Wold et al. 2010, 2011). 54 

A wide range of automatic grading systems have been developed for fruits and vegetables (Kondo 55 

2010), where the objective usually is to detect and remove defect objects. Similar automatic grading 56 

systems based on imaging technologies can be found in the fish industry, where grading can be done 57 

according to e.g. colour, blood spots, bones and foreign objects (Mathiassen et al. 2011). An on-line 58 

inspection system has also been developed for separating wholesome from questionable poultry 59 

carcasses (Chao et al. 2002). All these systems are based on some kind of classification algorithm 60 

where the assignment of one object is independent of all the other objects. The systems therefore 61 

differ considerably from the application described here, where the objective is to create classes with 62 

different target values of a continuous parameter (fat percentage in this case).  The assignment of 63 

each object thereby depends on all the other objects that have already been sorted. Some relevant 64 

classification algorithms based on predicted end-product quality have been developed by Berget et 65 

al. (2002a, 2002b, 2003), but to our knowledge no such systems are commercially available or have 66 

been tested on-line. 67 

 The main objectives of this work were to  68 

 Develop an algorithm for on-line sorting of meat trimmings into categories with different fat 69 

contents 70 

 Test the algorithm by simulations  71 

 Test the complete sorting system in a pilot-plant environment 72 



2 Materials and methods 73 

2.1 Overall system 74 

The system consists of a conveyor belt, a NIR imaging scanner (QV500, Tomra Sorting Solutions, 75 

Asker, Norway), a flow weigher and grader (both Marel hf, Iceland) and a host computer containing 76 

synchronizing software and a sorting algorithm. A schematic illustration of the system is given in 77 

Figure 1.  The fat content of each trimming is predicted from the NIR scan, and combined with the 78 

weight measurement. The grader automatically directs each piece to a specific category based on 79 

results from the sorting algorithm. The number of categories and their target fat values are specified 80 

by the user. 81 

 82 

 83 

Figure 1: Schematic representation of the sorting system 84 

 85 

2.2 Sorting algorithm 86 

2.2.1 Multi-response optimisation 87 

The sorting can be viewed as a multi-response optimisation problem, where fat content in each 88 

category are the responses. If there are N categories, there are N responses to be optimised: 89 
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 92 

Multi-response optimisation problems can be solved by using desirability functions (Harrington, 93 

1965). A desirability function transforms each response to a dimensionless number di, interpreted as 94 

the desirability of the response value. The desirability di varies between 0 and 1. When di is 0, the 95 



solution is not acceptable, and when it is 1 the solution is perfect. The overall desirability of a system 96 

with i responses is defined as the geometrical mean of all di’s: 97 

 98 

  N/1

N21 d*...*d*dD          (1) 99 

 100 

The objective is then to maximise D. The geometrical mean will be close to zero if one of the di’s is 101 

close to zero, which means that a solution where all responses are “pretty good” will be preferred 102 

over a solution where some responses are perfectly on target and some are far from target.  103 

 104 

The di functions are tailor-made for each specific problem to be solved. If the responses have target 105 

values, as they do in this case, the following formulation introduced by Derringer and Suich (1980) is 106 

often used: 107 
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Where T is the target value, U and L are upper and lower limits, and s and t define steepness on each 110 

side of the target T. Note that the target value T is not necessarily the mean value of U and L, and the 111 

steepness are not necessarily equal on both sides of T. Figure 2 shows how the steepness varies as a 112 

function of s and t. High s and t means that only values very close to the target are acceptable, while 113 

low s and t means that most solutions are equally good as long as they are within the lower and 114 

upper limits. s=t=1 yields a function where the desirability decreases linearly with the distance from 115 

target. Different responses can have functions with different steepness, which means that the 116 

steepness can be used to prioritize between responses. 117 



 118 

Figure 2: The plot shows how the steepness of a desirability function varies with the parameters s and t. 119 

 120 

In the sorting algorithm, the overall desirability D is calculated for all possible outcomes. If there are 121 

three categories, the algorithmic steps are: 122 

For each new meat piece: 123 

1. Calculate the overall desirability D if the meat piece is added to category 1 124 
2. Calculate the overall desirability D if the meat piece is added to category 2 125 
3. Calculate the overall desirability D if the meat piece is added to category 3 126 
4. Choose the category which leads to the highest D value 127 
5. Update the content of the chosen category 128 

 129 

If the overall desirability is zero for all three possible solutions, the meat is assigned to a fourth 130 

“unsorted” category. Trimmings that are unsorted can be recycled to the conveyor belt as they might 131 

fit in at a later stage of sorting.  132 

2.2.2 Additional restrictions 133 

The framework based on desirability functions is very flexible, meaning that it is easy to add more 134 

responses/restrictions to some or all categories. An additional restriction that will be tested here is to 135 

set limitations on fat content for each individual trimming in one or several categories. This is for 136 

example relevant for the low-fat categories, where one does not want chunks of pure fat even if it 137 

doesn’t affect the average fat level. Likewise, it is not desirable to have too lean pieces in the high-fat 138 

category since lean meat is more valuable than fat.  139 

In general, a separate desirability function is defined for each additional restriction. The desirability 140 

for a given category i is then the geometrical mean of all P desirabilities related to that category: 141 

 142 
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iP2i1ii d*...*d*dd         (3) 143 

2.2.3 Starting conditions 144 

Many trimmings will be assigned to the “unsorted” category in the beginning, when each sample has 145 
a large influence on the average values. The fat level in a single trimming has to be very close to 146 
target in order to be assigned to an empty category. This means that a lot of pieces that would fit the 147 
category at a later stage, are discarded or assigned to another category which is not empty and 148 
thereby more robust towards changes. This problem is solved by adding e.g. 20 kg of “virtual” meat 149 
in each category at start-up, with fat level exactly at target. This will make the start more robust. The 150 
batch might be outside the allowed boundaries in the beginning, but this evens out when the total 151 
weight increases. 152 
 153 

2.3 Software and implementation 154 

The sorting algorithm was implemented in the commercial software package MATLAB (version 7.13, 155 

The MathWorks Inc., 2011), and the synchronizing software was written in C# (version 4.0, Microsoft 156 

Corporation, 2010) with a bridge towards the MATLAB-implemented algorithm.  157 

All data were analysed and plotted in either MATLAB or Minitab 16 Statistical Software (Minitab, Inc., 158 

2010). 159 

2.4 Simulation tests 160 

The sorting algorithm was tested using measurements of real beef trimmings by the NIR scanner 161 

QV500. The measurements were done in a Norwegian meat processing plant under ordinary 162 

production conditions. The trimmings passed under the scanner on a conveyor belt. The scanner was 163 

calibrated to produce one fat estimate per trimming. Details on the scanner and how it was 164 

calibrated is published by Wold et al. (2011). A total of 132 trimmings were weighed and then 165 

scanned two, three or four times from different orientations, mimicking the random variation that 166 

would occur in a processing line. Each scan produced one fat estimate. Each trimming was then 167 

homogenized and fat reference measurements were taken using low field proton nuclear magnetic 168 

resonance (NMR), using the Maran Ultra Resonance 0.5 tesla (Oxford Instruments, UK) (Wold et al., 169 

2011). The total data set consists of 371 sample combinations of weight, predicted fat and true fat. 170 

The correlation between predicted fat (measured by the scanner) and the true fat is shown in Figure 171 

3. It can be seen that there were quite large deviations between the two, especially for fat 172 

percentages higher than about 20. These deviations are mainly due to the heterogeneity of the 173 

trimmings. The correspondence between fat and weight is also illustrated in Figure 3. In the 174 



simulations, trimmings were selected randomly (with replacement) from these 371 samples until the 175 

desired number of trimmings was obtained. 176 

 177 

Figure 1 Data used for simulations. The left plot shows correlation between predicted and true fat, and the right plot 178 
shows weight versus true fat. 179 

 180 

Two parameters were varied in the simulation tests: batch size and additional restrictions. They were 181 

varied according to a factorial two-level design, meaning that there were 22=4 different combinations 182 

of settings. Each of the four combinations was repeated 50 times with a random selection of 183 

trimmings, in order to obtain reliable ranges of variation. The target values and limits were chosen to 184 

reflect realistic industry applications, and the same settings were to be used in the pilot plant tests 185 

with beef trimmings. The steepness parameter for the desirability function was set to five for all 186 

categories, implying that it was important to stay close to the target value for all of them. All 187 

parameters (both variable and constant) are summarised in Table 1. 188 

 189 

Table 1 Simulation settings 190 

 Level 1 Level 2 

Batch size (# trimmings) 200 1000 

Additional restrictions on 
single trimmings No 

All trimmings should be: 
>18 fat% in the 21%-category 
<8 fat% in the 5%-category 

Target values (mean fat%) T1=5, T2=14, T3=21 

Dummy start weight 20 kg in each category 

Steepness of desirability 
function 

s=t=5 for all categories 

Upper and lower levels for 
desirability function 

Ui=Ti+1 
Li=Ti-1 

Number of repetitions for each 
combination of settings 

50 

 191 

 192 



 193 

2.5 Pilot plant trials 194 

Five batches of pork (A-E) and three batches of beef (F-H) trimmings were collected, with total 195 

weights varying from 104-189 kg. The pork batches were sorted into three categories with target 196 

values 6%, 14% and 23% fat, and no restrictions were added in the sorting algorithm. After sorting, 197 

each category was run through the NIR scanner (without sorting) three times, in order to get an 198 

estimate of the fat content. After the third rerun all batches (except E) were ground thoroughly. 199 

Three samples of three kg each were collected from the ground samples, then homogenized, and the 200 

fat content in one subsample from each of these were determined using a Foss Foodscan system 201 

(FOSS, Hillerød, Denmark). The experimental steps are illustrated in Figure 4.  202 

The three beef batches were sorted in a similar manner, with target values 5%, 14% and 21% fat. This 203 

time, two subsamples were taken for fat reference measurements from each homogenized sample. 204 

In addition, restrictions were imposed on batch G and H. The restrictions were the same as in the 205 

simulations, see Table 1.  206 

 207 

Figure 4: Experimental steps for sorting pork in the pilot plant 208 

3 Results 209 

3.1 Simulations 210 

As an example, one of the simulated sorting processes will be presented in detail. The selected 211 

simulation had no additional restrictions, and the batch size was set to 200 trimmings which led to a 212 

total weight of 203 kg. The sorting process is illustrated in Figure 5. The 5% category contains 75 kg 213 

after the sorting is finished. The estimated fat level is around four percentage points too high at the 214 

beginning of the process. This is due to the fact that the algorithm starts with a virtual 20 kg of meat, 215 

in order to avoid many rejections in the beginning of the sorting. These 20 kg are used when 216 

calculating the desirability value, but do not contribute to the estimated fat level in Figure . However, 217 

the average fat percentage slowly decreases towards a final estimated value of 5.9. The true fat level 218 

is slightly higher throughout the process, and ends up 1.2 percentage points above the target. The 219 

14% category receives only a total of 23 kg, and both the estimated and true fat is very close to 220 

target during the entire process. The 21% category is the largest (105 kg), but both the estimated and 221 

true fat level is relatively stable after approximately 30 kg. The deviation between estimated and true 222 



fat is largest for this category. While the estimated value is very close to target, the true fat content is 223 

consistently about two percentage points lower than target.  224 

 225 

Figure 5: Evolution of the sorting process for a selected simulation. The abscissa shows total weight in each category, and 226 
the ordinate shows average fat content. Dots and crosses represent estimated and true fat values respectively.  The 227 
numbers above the plot are the final values when all trimmings are sorted. 228 

 229 

Fifty random repetitions were simulated for each of the four combinations of batch size and 230 

restriction. The resulting deviations between target values and estimated and true values are given in 231 

Figure 6. It is clear that the main difference between batch sizes is lower variation for the larger 232 

batches. This indicates that the system has not always reached a steady state when the batch size is 233 

small, but the overall results (which will be described next) are the same irrespective of batch size. 234 

Since the large batch size is more consistent, we choose to focus on those results when evaluating 235 

difference between categories and restrictions.  236 

Figure 6 shows that while the estimated fat-value is generally within ±1 percentage point (which 237 

were set as the upper and lower limits), the true value is in some cases more than ±2 percentage 238 

points off target. When no additional restriction is defined, the 5% category is always under-239 

estimated; the 14% category is very close to target, while the 21% category is always over-estimated. 240 

When adding the restriction on each trimming in the 5% and 21% categories, the deviations decrease 241 

for these categories, while the 14% category now becomes 1-2 percentage points below target. 242 

0 20 40 60
0

5

10

15

20

weight (kg)

F
a
t 

le
v
e
l 
(%

)
Target = 5 %      

Predicted = 5.85 %

Actual = 6.24 %   

0 5 10 15 20
0

5

10

15

20

weight (kg)

F
a
t 

le
v
e
l 
(%

)

Target = 14 %      

Predicted = 13.48 %

Actual = 13.46 %   

0 50 100
0

5

10

15

20

weight (kg)

F
a
t 

le
v
e
l 
(%

)

Target = 21 %      

Predicted = 20.43 %

Actual = 18.08 %   



 243 

Figure 6:  Boxplot showing the deviation between target value and estimated fat content (left) and true fat content 244 
(right) for each category and simulation setting. 245 

 246 

The batch weights for 200 and 1000 trimmings across all replicates were 176.4 ± 17.1 kg and 863.7 ± 247 

96.3 kg respectively.  Figure 7 shows the relative amounts of meat ending up in the different 248 

categories. When no restriction is added, around half of the meat is directed to the 21% category, 249 

while the remaining half is distributed almost evenly between the 5% and 14% categories. Adding the 250 

restriction induces a dramatic change in this distribution. More than half of the meat is now sorted 251 

into the 14% category, while only one fifth goes to the 21% category. The amount of the batch 252 

allocated to the 5%-category stays approximately the same. 253 



 254 

Figure 7:  Boxplot showing the percentage of total batch weight received by each category for different batch sizes and 255 
restrictions 256 

 257 

The number of unsorted trimmings is highly affected by the added restrictions, as expected. For the 258 

200-sample batches, weight% of unsorted trimmings increases from 3.9(±1.6) to 15.0(±4.6). For the 259 

1000-sample batches, the corresponding increase was from 1.7(±0.6) to 17.6(±2.0).  260 

   261 

3.2 Pilot plant 262 

All results for the pilot plant trials are given in Table 2. Five batches of pork (A-E) were sorted into 263 

three categories with target values 6, 14 and 23% fat. All batches were run without any additional 264 

restrictions, and the resulting fat estimates for each category is plotted in Figure 9 (upper panel). The 265 

reference measurements and NIR scans both show the same pattern as the simulations; the low-fat 266 

category contains slightly too much fat, and the high-fat category contains too little fat. 267 

Three batches of beef were sorted into three categories with target values 5, 14 and 21% fat. The 268 

first batch (F) was run without restrictions, while batch G and H were subjected to the same 269 

restrictions as in the simulation study (see Table 1). The summarised results for all three batches are 270 

plotted in the lower panel of Figure 9. There is a discrepancy between the NIR scans and reference 271 

method for the 14% and 21% categories; the reference method shows consistently 2-4 percentage 272 

points lower value than the NIR scans. The reason for this is not known, but it might be due to a bias 273 

in the NIR prediction model for high-fat beef trimmings.  274 

The evolvement of batch H is shown in Figure 8. The 5% category is estimated to 4% by the 275 

algorithm, which is the lower acceptable limit according to the desirability function. The estimate is 276 



not able to reach target value since high-fat trimmings are not allowed, but as low-fat batches 277 

generally are under-estimated the true value is still slightly above target. The 14%-category is over-278 

estimated, as the simulations also showed, while the reference values are lower than those 279 

estimated by the algorithm. The 21%-category is also over-estimated, which is expected since low-fat 280 

trimmings are not allowed due to the added restrictions to beef trials. The reference values are 281 

however closer to target. 282 

Adding restrictions led to the same change in yield for each category as was seen in the simulations: 283 

The 5% category received approx. 35 weight% regardless of restrictions; the 14% category increased 284 

from 25 weight% to 55 weight%, and the 21% category decreased from 42 weight% to 8 weight% of 285 

the total batch weight (see Table 2). In the meat industry, the need for meat with 14% fat is greater 286 

than that of 23% fat, indicating a benefit of using such restrictions. The amount of unsorted 287 

trimmings was unfortunately only measured for batch H, where 12.4 weight% was not assigned to 288 

any category. All these results indicate that the data used for simulations were quite representative 289 

for the beef trimmings in the pilot trial. 290 

Table 2 Overview of the pilot plant trials.  291 

  
Restr.1 Day Target Alg2  

(%) 

Scan3  
(%) 

Ref4  
(%) 

Weight  
(kg) 

Weight  
(weight%) 

Total weight 
(kg) 

Pork 

A No 1 

6% 7.2 10.0 ± 0.6 10.8 ± 1.5 63.4 33.6 

188.8 14% 14.0 15.5 ± 0.5 15.1 ± 0.8 103.9 55.0 

23% 22.9 18.9 ± 0.8 23.0 ± 0.8 21.5 11.4 

B No 1 

6% 6.1 7.4 ± 0.5 9.9 ± 0.6 39.1 22.1 

176.7 14% 14.0 13.8 ± 0.3 17.0 ± 1.8 90.6 51.3 

23% 23.0 19.8 ± 0.8 21.5 ± 0.3 47.0 26.6 

C No 2 

6% 6.4 9.2 ± 0.5 9.3 ± 0.4 76.5 44.8 

170.7 14% 14 12.3 ± 0.7 15.0 ± 1.8 32.1 18.8 

23% 23.1 17.8 ± 1.1 17.0 ± 2.0 62.0 36.3 

D No 2 

6% 6.4 9.8 ± 0.54 8.9 ± 1.4 62.2 40.3 

154.4 14% 14 16.2 ± 0.9 16.6 ± 1.7 28.5 18.5 

23% 23 18.6 ± 1.8 19.2 ± 1.2 63.7 41.2 

E No 2 

6% 6.3 8.0 ± 0.5 * 56.4 54.1 

104.3 14% 14 16.1 ± 0.6 * 23.2 22.2 

23% 23 17.9 ± 1.6 * 24.7 23.7 

Beef 

F No 3 

5% 5 8.4 ± 0.4 7.2 ± 0.7 51.2 32.6 

157.0 14% 14 15.8 ± 1.1 12.2 ± 1.1 39.6 25.2 

21% 21 23.2 ± 1.4 18.2 ± 1.7 66.2 42.2 

G Yes 3 

5% 3.7 6.3  ± 0.5 6.7 ± 0.8 55.1 37.0 

148.9 14% 14.8 17.9 ± 0.3 14.2 ± 0.5 81.4 54.7 

21% 23.1 23.6 ± 3.0 20.6 ± 1.1 12.4 8.3 

H Yes 3 

5% 4 5.7 ± 0.4 5.9 ± 0.3 54.7 35.8 

152.6 14% 15.1 14.9 ± 0.4 12.0 ± 0.9 84.4 55.3 

21% 23.4 20.8 ± 2.3 17.4 ± 1.5 13.5 8.8 
1Whether or not additional restrictions were imposed, see Table 1 for details.  292 
2Average fat content as calculated by the sorting algorithm.  293 
3Average fat content as predicted by reruns through the NIR scanner ± standard deviation of 294 

replicates. 295 
4Average fat as content measured by reference measurement ± standard deviation of replicates. 296 



4 Discussion 297 

With the current system, there will always be a systematic under-estimation of low-fat categories 298 

and a corresponding over-estimation of high-fat categories. This is due to non-random heterogeneity 299 

in the trimmings; many pieces are lean on one side and fat on the other side, and the fat content 300 

predicted by the NIR scanner depends on which side is scanned. A trimming which is predicted to be 301 

lean, and thereby sorted into the low-fat category, will sometimes have a true fat-level which is 302 

much higher. The true value will however never be much lower, and this leads to the systematic bias 303 

observed in simulations and pilot plant trials. Solutions to this problem could be to: 304 

 use a measurement system that gives more accurate fat estimates per trimming. For the NIR 305 

system this can be obtained by scanning each trimming from more orientations, in order to 306 

obtain a more representative fat value. This involves either a new scanner design or a 307 

conveyor system that flips and re-scans the trimmings  308 

 re-scan each category after sorting, as was done in the pilot plant trials. This gives a more 309 

reliable estimate, and the fat content can be adjusted afterwards. This solution is more 310 

labour intensive, but can also be done automatically and continuous if several NIR scanners 311 

are available 312 

 set the target values correspondingly lower for the low-fat categories and higher for the 313 

high-fat categories. This is not straight-forward, as the magnitude of the bias will depend on 314 

the distribution of trimmings as well as the target value itself. It is impossible to make 315 

general recommendations on how to specify the target values 316 

Despite of the observed biases, the automatic sorting system has a commercial potential. The 317 

different batches can be standardised according to fat contents without the need for a grinding step, 318 

which improves the quality of the meat upon further processing, and reduces handling and labour 319 

costs.  320 

The fractions of meat sorted into the different categories when using restrictions were in this case 321 

more favourable to the industry, since there is a higher demand for the 14% category than the 23% 322 

category. Generally, these fractions will also depend on the meat itself; trimmings from lean animals 323 

will give a higher proportion of the low-fat categories etc. It is often desirable to control the amount 324 

to each category, depending on price and demand. To do so in a more controlled way than using 325 

restrictions, it is possible to add a desirability function for the weight distribution itself in order to 326 

steer the production in the right direction. 327 

In some meat batches it is also important to keep the connective tissue below certain boundaries. 328 

For example, in Norway the ratio of connective tissue and protein should be below 0.05 for the 5% 329 

category of beef. If connective tissue could be predicted by e.g. a modified NIR scanner, this 330 

restriction can easily be incorporated in the sorting algorithm by adding more desirability functions, 331 

as described in the theory section.  332 

When adding more restrictions, it is important to tune the steepness parameters of the desirability 333 

functions correctly. The steepness should depend on the importance of each restriction, and in this 334 

setting it is natural to define the steepest desirability function for the fat content. It is also important 335 

to acknowledge that the more restrictions we add, the harder it will be to obtain the desired fat level 336 

within a set tolerance, and the more pieces will be discarded by the algorithm.  337 



5 Conclusion 338 

A system for sorting meat trimmings into categories with different fat levels was developed and 339 

tested. The sorting algorithm is based on desirability functions, which makes it versatile when it 340 

comes to definition of categories, additional restrictions and prioritising between categories and 341 

restrictions. The system was tested both by simulations and pilot-plant trials. The results showed that 342 

the sorting algorithm is able to create batches of meat with fat% within the defined tolerance limits, 343 

and that the total system has potential for industry implementation. The major drawback of the 344 

system is inaccuracies in on-line fat measurements of meat trimmings, which lead to a systematic 345 

(although small) bias for the low-fat and high-fat categories.  346 
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