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Abstract

Effects of glucose availability were investigated in Lactobacillus sakei strains 23K and LS25

cultivated in anaerobic, glucose-limited chemostats set at high (D = 0.357 h-1) and low (D =

0.045 h-1) dilution rates. We observed for both strains a shift from homolactic towards more

mixed acid fermentation when comparing high to low growth rates. However, this change

was more pronounced for LS25 than for 23K, where dominating products were lactate>for-

mate>acetate�ethanol at both conditions. A multivariate approach was used for analyzing

proteome and transcriptome data from the bacterial cultures, where the predictive power of

the omics data was used for identifying features that can explain the differences in the end-

product profiles. We show that the different degree of response to the same energy restric-

tion revealed interesting strain specific regulation. An elevated formate production level dur-

ing slow growth, more for LS25 than for 23K, was clearly reflected in correlating pyruvate

formate lyase expression. With stronger effect for LS25, differential expression of the Rex

transcriptional regulator and NADH oxidase, a target of Rex, indicated that maintainance of

the cell redox balance, in terms of the NADH/NAD+ ratio, may be a key process during the

metabolic change. The results provide a better understanding of different strategies that

cells may deploy in response to changes in substrate availability.

Introduction

A superior performance of the lactic acid bacterium (LAB) Lactobacillus sakei in meat fermen-

tation has been explained by its genomic and physiological adaptions to the raw-meat environ-

ment [1]. The bacterium is useful in industrial meat fermentation, where important attributes

for starter cultures are effective growth and high acidification activity. L. sakei is strictly fer-

mentative, completely devoid of a respiratory chain, however, still aerotolerant [1, 2]. Depend-

ing on the growth condition, the bacterium can shift between a pathway leading to nearly

exclusively lactate production versus a pathway leading to the production of mixed acids. In
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general, homofermentative LAB convert carbohydrates into lactate using the Embden-Meyer-

hof pathway (EMP). As a bacterial substrate, meat contains a restricted amount and diversity

of carbohydrates, mostly consisting of low-levels of glucose derived from glycogen. Therefore,

exogenous glucose is often added to speed up and improve the ripening process of fermented

meat products. Hexose fermentation in L. sakei is homolactic and proceeds via EMP, resulting

in formation of lactic acid and subsequent decrease in pH [1–3]. Heterofermentative LAB use

the phosphoketolase pathway (PKP), which is often used by LAB to ferment pentoses [4]. In

meat, ribose is also available, mostly derived from ATP hydrolysis, and is fermented via the

heterolactic PKP in L. sakei [2, 3]. Reflecting the ability to metabolize meat components such

as proteins, L. sakei has a comprehensive set of transporters [1, 5, 6]. An efficient utilization of

nucleosides closely linked with the uptake and catabolic machinery of ribose [1, 3, 7–9], and

conversion of certain amino acids such as arginine through the arginine deiminase (ADI)

pathway [10, 11], provides this species with additional energy sources and thus competitive

advantages in the meat environment.

The study of bacteria at a defined growth rate can be achieved in the chemostat [12], in

which the specific growth rate is directly manipulated by changing the dilution rate, creating a

controlled and constant environment, so-called steady-state. In the present work, we grew two

strains of L. sakei in anaerobic, glucose-limited chemostats at two different growth rates,

where fast and slow growth demonstrate adaption to glucose availability, which in many

organisms results in a shift in metabolic strategy that generates less ATP per glucose in situa-

tions with high glucose availability [13–16]. We chose to study L. sakei strain 23K, originally

isolated from sausage [17], and the commercial starter culture strain LS25 from fermented sau-

sage [18] for three reasons. First, both strains have publicly available genome sequences [1, 19].

Second, the strains represent the two different L. sakei subspecies, carnosus and sakei, respec-

tively [20–22]. Third, they differ in their patterns of growth and in metabolic/fermenting

capacities [8, 21, 23]. LS25 has been shown to ferment a larger variety of carbohydrates than

23K and to grow faster on ribose. Also, LS25 seems to be a faster acid producer which shows

better abilities as a starter culture based on acidification properties in a meat model and its

ability to compete with the indigenous microbiota of meat batter, compared with 23K. We

here investigate and compare how growth rate-dependent relative protein and gene transcript

levels relate to the metabolic end-product formation profiles of the two L. sakei strains. The

main goal was to unravel underlying molecular mechanisms involved in the response to

reduced glucose availability.

Materials and methods

Bacterial strains and growth medium

L. sakei strain 23K is a plasmid-cured sausage isolate [17], and strain LS25 is a commercial

starter culture strain for salami sausage [18]. The complete and a draft genome sequence have

been published for 23K [1] and for LS25 [19], respectively. Both strains were grown in a chem-

ically defined medium (CDM) which is specifically designed to support the growth of LAB [24,

25]. The viability of cells from the chemostat cultures was determined by conventional plating

on agar plates of the rich De Man, Rogosa and Sharpe (MRS) medium (Oxoid) and grown at

30˚C for 48 h.

Chemostat cultures

Anaerobic glucose-limited chemostat cultures were grown in 300-ml fermenter vessels

(Soham Scientific) with a total volume of 280 ml culture under continuous stirring. The tem-

perature was kept at 30˚C and the pH kept constant at pH 6.5 by automatic addition of 2 M
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NaOH. Growth rates of the steady-states were controlled by the culture dilution rates (D) set at

0.045 h-1 (henceforth also referred to as low growth rate) and 0.357 h-1 (high growth rate). The

inoculum for each chemostat culture was prepared through two 10-mL subcultures for 16 h

each, with a transfer volume of 5% (vol vol-1). After batch growth until an optical density at

600 nm (OD600) of around 2 was reached, fresh medium was pumped at the appropriate flow.

The cultures were considered to be in steady-state since no detectable glucose remained in the

culture supernatant and the ODs, dry weights, and product concentrations of the cultures

were constant over two consecutive days. All experiments were performed in triplicate, result-

ing in sets of 12 samples (2 strains, 2 growth rates, 3 biological replicates) for further analyses.

Sampling

The chemostat cultures were grown for six generations before sampling. Biomass was moni-

tored by measuring the OD600, and biomass dry weight was determined gravimetrically. For

proteomic analysis, cells were harvested by centrifugation at 2800 x g at 4˚C and washed twice

in 0.01 M Tris-HCl pH 7.5 for 15 min before storage at -80˚C. Supernatants were frozen at

-20˚C until metabolite analysis. For transcriptomic analysis, samples (3 ml) were collected and

added RNA Protect Bacteria Reagent (Qiagen) (6 ml), vortexed for 5 sec, incubated at room

temperature for 5 min, centrifuged for 10 min at 3700 x g, before the pellet was stored at -80˚C

for later RNA purification.

Metabolite analysis

Supernatant samples were filtered through a 0.22 μm Millex-HV Durapore PVDF filter (Milli-

pore), and extracellular concentrations of glucose, pyruvate, lactate, formate, acetate, succinate,

acetoin, butanediol and ethanol were analyzed on an Agilent 1100 series high-pressure liquid

chromatography (HPLC) system (Agilent Technologies) equipped with an auto sampler

cooled to 4˚C, a diode array detector (DAD), and a RI 132 refractive index (Gilson) detector.

A Rezex organic acid analysis column (Phenomenex) at a temperature of 45˚C with 7.2 mM

H2SO4 as the eluent was used as previously described [24]. ChemStation chromatography soft-

ware (Agilent) was used for data integration, and concentrations were estimated by compari-

son of peak areas to a calibration curve obtained with standards analyzed under the same

conditions.

The extracellular concentration in the filtered supernatants of alanine, arginine, aspartic

acid, asparagine, citrulline, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine,

lysine, methionine, ornithine, phenylalanine, serine, threonine, tryptophan, tyrosine, and

valine were determined by liquid chromatography with fluorescence detection (350 nm excita-

tion, 450 nm emission, RF 20-A, Shimadzu, ‘s-Hertogenbosch, The Netherlands) as detailed

elsewhere [26]. The method is based on a precolumn derivatization protocol with ortho-phta-

laldehyde and 3-mercaptopropionic acid, using 1 mM of DL-norvaline as an internal standard.

Compounds listed were quantified by comparison of peak areas against normalized individual

calibration lines obtained under the same conditions.

Protein extraction and NanoLC-ESI-LTQ Orbitrap Velos Pro mass

spectrometry analysis

Extraction of soluble proteins from 10 ml samples of the cultures was performed as previously

described by McLeod et al. (8). The protein concentration of the cytosolic fraction was deter-

mined using the colorimetric assay RC DC Protein Assay (Bio-Rad), with bovine serum albu-

min (BSA) as standard protein, according to the manufacturer’s instructions. Trypsin digested

samples (~0.5 μg) were loaded in randomized order onto a pre-column (Dionex, Acclaim
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PepMap Nano Trap column, C18, 75 μm i.d. x 2 cm, 3 μm) followed by separation on an ana-

lytical column (Dionex, Acclaim PepMap100 RSLCnano column, 75 μm x 15 cm, C18, 2 μm)

using a Dionex Ultimate NCS-3500RS LC system (Sunnyvale, CA) coupled online to an Orbi-

trap Velos Pro (Thermo Scientific) mass spectrometer (MS). A linear gradient of 90 minutes

was used with mobile phase A (0.1% formic acid / 2% acetonitrile) and mobile phase B (0.1%

formic acid / 90% acetonitrile) ramping from 8–38% mobile phase B, and the peptides were

continuously eluted into the Orbitrap MS. Data dependent acquisition was used in collision-

induced dissociation-mode, where the MS continuously sequenced the 7 ions with highest

intensity eluting from the column during the gradient. The raw spectra from the Orbitrap

were loaded into Progenesis LC-MS v4.0 (http://www.nonlinear.com/products/progenesis/lc-

ms/overview/), and retention time aligned to correlate precursor and potential fragment ion

spectra across samples. Spectra were centroided, deisotoped and charge-state-reduced to pro-

duce a single accurately mass measured monoisotopic mass for each peptide and the associated

fragment ions. The data were combined in a merge file and searched against L. sakei using

SeachGUI [27]. The search was open in PeptideShaker (https://code.google.com/p/peptide-

shaker/) and the identified proteins were transported back to Progenesis to fulfill the labelfree

analysis (peptide FDR = 1.0%). Normalized abundance values followed by log2 transformation

were used as inputs in statistical analyses.

RNA isolation, mRNA enrichment, cDNA synthesis and RNA sequencing

Total RNA was extracted from bacterial cells using the RNeasy Mini Kit (Qiagen) as described

by Rud et al. [28]. The RNA was quantified spectrophotometrically (NanoDrop ND-1000;

NanoDrop Technologies), and quality and purity were verified using an Agilent 2100 Bioana-

lyzer (Agilent Technologies). Sample criteria were A260/A280 ratio >1.9; A260/A280 ratio

*2.0; 23S/16S RNA ratio >1.3; RIN>8.0 for use in the transcriptome analysis. The MICROB

Express™ Bacterial mRNA Enrichment Kit (Ambion, Life Technologies) was used for the selec-

tive removal of 16S and 23S rRNA with oligonucleotide probes attached to magnetic beads

according to the manufacturer’s protocol. Furthermore, enriched mRNA yields were analyzed

using NanoDrop ND-1000 and Agilent 2100 Bioanalyzer, before generation of cDNA sequenc-

ing libraries with the Illumina TruSeq RNA Sample Prep Kit following instructions from the

supplier (Illumina Netherlands BV, #RS-122-2001). The mRNA is by this procedure frag-

mented into small pieces using divalent cations under elevated temperature, copied into first

strand cDNA using SuperScript1 II Reverse Transcriptase and random primers (Invitrogen).

This is followed by second strand cDNA synthesis using DNA polymerase I and RNase H. The

cDNA fragments then go through an end repair process, the addition of a single ‘A’ base, and

then ligation of RNA adapters index (barcoding). The products are purified and enriched with

PCR to create the final cDNA library. Agencourt AMPure XP (Beckman Coulter, #A63880)

solid-phase paramagnetic bead technology was used for the purification of PCR amplicons.

Double-stranded cDNA was quantified and the quality and purity were verified using the

NanoDrop ND-1000 and the Agilent 2100 Bioanalyzer, respectively. The cDNA libraries were

sequenced (50 bp read length, 12-plex, one lane) on a HiSeq system (Illumina). The raw reads

have been deposited to the National Center for Biotechnology Information (NCBI) Sequence

Read Archive (SRA) under accession number PRJNA393246.

RNA sequencing-based transcriptome data

First, the software bowtie [29] was used to construct a reference database from each of the two

strains in the study, consisting of 1963 and 2027 annotated genes for L. sakei strain 23K [1]

and strain LS25 [19], respectively. Next, reads in fastq formatted files were mapped to the
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corresponding reference database using the command line “bowtie -n 2—trim5 10 –best

<filenames>”, which means we allow up to 2 mismatches and trim each read with 10 nt in the

5-end. The latter was due to a quality inspection of the reads using the FastQC software

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The counts for each strain were

arranged in a matrix of N rows (N = 1963 for 23K, N = 2027 for LS25) and 6 columns, where 3

of the columns are data from low and 3 from high growth rate conditions, using the software R

(http://www.r-project.org/). The 16S and 23S rRNA-genes usually consume the majority of the

sequencing depth in microbial RNAseq samples, and the total number of reads mapped in

each sample is very sensitive to these genes. Despite selective removal of the 16S and 23S rRNA

using the MICROBExpress™ Bacterial mRNA Enrichment Kit, these loci still influence largely

and were therefore discarded from the data set. The read counts were converted to RPKM-val-

ues (Reads Per Kilobase gene per Million mapped reads) in the Nx6 matrices described above,

followed by log2 transformation before being used as inputs in statistical analyses.

Data exploration and statistical analyses

Effects of strains and growth condition for the phenotypic end-product profiles (henceforth

also referred to as phenome) were defined by F-test in analysis of variance for lactate, formate,

ethanol and acetate after adjusting p-value by False Discovery Rate (FDR) using the rotation

test described by Langsrud et al. [30]. Similar approach was used to define effects of strains

and growth condition for the amino acids. The tests were performed in R using the package

ffmanova (https://CRAN.R-project.org/package=ffmanova). For the proteome (abundance

values, log2 transformed) and transcriptome (RPKM-values, log2 transformed), with focus on

common genes for both strains, predictions of the end-product phenotype were performed

with variable selection by the multivariate elastic net method [31] using the glmnet package in

R (https://CRAN.R-project.org/package=glmnet). Elastic net combines the merits of ridge

regression (known also as Tikhonov regularization) and the Lasso method [32, 33]. First, the

ridge regression coefficients for all variables multiplying the estimated coefficients are found,

and second, a Lasso type shrinkage is performed. The method was repeated 1000 times using

alpha tuning parameter 0.5, which gives a 50:50 weight to ridge regression and Lasso. The

regularization parameter (lambda) was set to log.lambda.min. An explorative multivariate

Principal Component Analysis (PCA) was performed within each data block (phenome, tran-

scriptome and proteome) before and after elastic net feature extraction. To omit variables that

only describe variation within the biological replicates, proteins and transcripts selected for the

prediction of the phenotype were subjected to validation by univariate confidence intervals

[34]. This was performed on the fold change difference within each strain.

Results

Metabolite analyses revealed phenotypic strain differences

For the two strains of L. sakei, 23K and LS25, cultivated under anaerobic conditions in glu-

cose-limited chemostat cultures set at high (D = 0.357 h-1) and low (D = 0.045 h-1) dilution

rates, glucose was completely consumed throughout cultivation. All chemostat results showed

a carbon balance above 95% on the basis of glucose consumption and organic acid formation

(Table 1). The reduction in glucose availability from high to low growth rate resulted in a sig-

nificantly changed end-product profile (phenome) for both strains (S1 Table), though the

dominating products were lactate>formate>acetate�ethanol at both conditions (Fig 1). The

shifts in metabolism is illustrated with PCA for mean centred standardised data (Fig 2). PC1

captured as much as 99% of the total variation in the data set, separating the samples from

high vs low growth rate in the score plot (Fig 2, left), clearly more pronounced for strain LS25
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than for 23K (S1 Table), and the correlating end-products in the loading plot (Fig 2, right).

High growth rate correlated with lactate, reflecting homolactic fermentation, while low growth

rate correlated with aceate, formate and ethanol, reflecting a more mixed acid profile. The lac-

tate flux decreased stronger for LS25 compared with 23K from high to low growth rate

Table 1. Metabolite production, carbon flux and carbon flux/growth rate in L. sakei during continuous cultivation in glucose-limited CDM-LAB

medium.

Strain Dilution rate, h-1 Dry Weight

(dW) g/litera
Lactatea Formatea Acetatea Ethanola % Carbon balancea, b

23K 0.357 1.83 (0.01)

Conc (mM) 91.78 (0.63) 15.13 (1.22) 10.57 (1.15) 7.91 (0.56) 98.32 (0.65)

Flux (mmol h-1) dW-1 17.84 (0.12) 2.94 (0.24) 2.06 (0.22) 1.54 (0.11)

mmol g-1 49.96 (0.34) 8.24 (0.66) 5.76 (0.62) 4.30 (0.30)

0.045 1.26 (0.09)

Conc (mM) 76.25 (4.09) 29.85 (3.88) 20.25 (3.15) 15.28 (1.19)

Flux (mmol h-1) dW-1 2.72 (0.15) 1.06 (0.14) 0.72 (0.11) 0.54 (0.04) 99.00 (0.56)

mmol g-1 60.34 (3.24) 23.62 (3.07) 16.03 (2.49) 12.09 (0.94)

LS25 0.357 1.78 (0.04)

Conc (mM) 96.00 (1.79) 11.61 (1.78) 8.01 (1.03) 6.93 (2.36)

Flux (mmol h-1) dW-1 19.23 (0.36) 2.33 (0.36) 1.61 (0.21) 1.39 (0.47) 98.95 (1.31)

mmol g-1 53.88 (1.00) 6.52 (1.00) 4.50 (0.58) 3.89 (1.32)

0.045 1.26 (0.07)

Conc (mM) 56.75 (0.47) 46.55 (0.20) 26.27 (0.14) 24.77 (0.89)

Flux (mmol h-1) dW-1 2.01 (0.02) 1.65 (0.01) 0.93 (0.01) 0.88 (0.03) 95.75 (0.37)

mmol g-1 44.75 (0.37) 36.70 (0.15) 20.71 (0.11) 19.53 (0.70)

aStandard deviation is shown in parentheses
bThe CDM-LAB medium contained 55.5 mM glucose

https://doi.org/10.1371/journal.pone.0187542.t001
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(Table 1), and the end-product formations (mol per mol glucose) illustrated the highest rela-

tive change for formate for LS25, which increased 75.1% compared to 49.3% in 23K (Fig 1).

The biomass concentration decreased from high to low growth rate for both strains. The dry

weight decreased by 31.15% and 29.21% (Table 1), and the OD600 by 24.1% and 17.1% for 23K

and LS25, respectively. We did not observe any significant differences in the percentage of via-

ble cells within these populations (data not shown).

Differences in consumption of certain amino acids were observed (S1 and S2 Tables). Ala-

nine, lysine, and glutamine consumption decreased at low compared with high growth rate,

however the changes were minor for the latter two amino acids. A simultanous increase was

seen in threonine and tryptophan consumption, which was minor for the latter amino acid.

The only amino acid for which the two strains responded differently upon changed growth

condition, was threonine. 23K cells consumed more than 95% of threonine at both growth

rates, whereas LS25 consumed approximately 73% during fast and 95% during slow growth.

Strain differences regardless of growth rate was also observed. 23K consumed most of the argi-

nine present in the growth medium, more than 93% at both growth rates, whereas LS25 con-

sumed less than 52%. Parallel to the consumption of arginine, small amounts of citrulline and

ornithine were detected for both strains, of which higher concentrations were observed for

23K (S3 Table). These data reflect the activity of the arginine deiminase (ADI) pathway, in

which arginine is converted via citrulline into ornithine, ammonia and CO2 with production

of ATP [10, 11, 35–37]. About 98–99% of asparagine and glutamine were consumed by both

strains at both growth rates, and 96% of serine (S2 Table).

Proteome and transcriptome profiling

The effects of glucose availability on the proteome and transcriptome, hence growth rate-

dependent relative protein and gene transcript levels, were investigated. The proteome was

analyzed using high-resolution LTQ-Orbitrap mass spectrometry, where peptides of 756 and

906 cytoplasmic proteins were detected in all the 6 samples of 23K and LS25, respectively, and

used for quantitation for each strain. Subsequent analysis of gene transcripts by RNA sequenc-

ing (RNA-seq) was performed, and for 23K and LS25 (excluding 23S and 16S genes), 99.9%
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and 99.7% of the genes were accounted for, respectively. The average number of reads per

gene were 1124 and 642, median number of reads per gene were 179 and 172, and the average

coverage per base inside genes were 84x and 47x for 23K and LS25, respectively. A complete

set of proteome and transcriptome log2 transformed data can be found in S4 Table.

By a multivariate approach, we analyzed how the proteome and transcriptome data relate

to the changes in the phenome end-product profile. PCA on the proteome (Fig 3) distin-

guished well the effects of strain, PC1 explained by 81%, and the effects of growth rate, PC2
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Fig 3. PCA on all features of the proteome and transcriptome. PCA of the proteome (all 643 variables) and transcriptome (all 1632

variables) mean centered and standardized to unit variance. Score plots (left) and loading plots (right) on PC1 (x-axis) vs PC2 (y-axis). L.

sakei strains 23K and LS25 are shown in blue and red, respectively. Squares indicate high growth rate and high glucose availability. Open

triangles indicate low growth rate and restricted glucose availability.

https://doi.org/10.1371/journal.pone.0187542.g003
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explained by 11%. PCA on the transcriptome (Fig 3) also defined the two strains as the most

important variation in the data, with PC1 explained by 65%. The effect of growth rate shown

in PC2 of the transcriptome was explained by 9%, and reflected differences between biological

replicates as well. The expression of the majority of transcripts were higher for LS25 than for

23K (left side of the PCA loading plot, Fig 3). Further PC’s only implied differences within bio-

logical replicates (S1 and S2 Figs). Neither PCA of the proteome, nor of the transcriptome,

reflected the same interaction pattern between strain and growth condition as seen for the phe-

nome (Fig 2 and S1 Table). This suggested that the interaction pattern observed for the phe-

nome with a stronger change for LS25 than for 23K was not associated with a corresponding

variation in a large number of proteins nor transcripts. A minor group of proteins and tran-

scripts were identified as relevant for the prediction of the phenome using supervised multi-

variate analysis by elastic net (S3 Fig), and univariate validation by confidence interval was

used for omission of those that only described variation within biological replicates. PCA per-

formed after this feature selection reflected similar pattern of variation as seen for the phe-

nome, both for the proteins and for the transcripts (Fig 4, left), with a larger shift for LS25 than

for 23K along the first PC. The selected features were assigned to 4 groups with similar pattern

along the two first PCs (Fig 4, right). Plots of selected features log2 transformed data can be

found in S4 Fig (proteome) and S5 Fig (transcriptome).

Proteins with altered level of expression from high to low growth rate are presented in

Table 2 and transcripts are presented in Table 3. Mean expression of the pattern of variation

within each of the groups are illustrated in Fig 5.

Proteome responses to reduced glucose availability

Proteins in group 1 and group 2 (Fig 5, Table 2 and S4 Fig) displayed elevated levels at low com-

pared with high growth rate, and particularly for group 1 proteins, the increase was stronger for

LS25 than for 23K. These proteins were positively correlated to formate, acetate and ethanol, and

negatively correlated to lactate, thus they increased as the fermentation was directed towards

mixed acid production. One of the proteins in group 1, formate C-acetyltransferase, often called

pyruvate formate lyase (PFL), increased for both strains. This enzyme catalyzes the reversible

conversion of pyruvate and Coenzyme-A (CoA) into formate and acetyl-CoA. Among all the

selected proteins, PFL increased the most. Another protein in this group, L-serine dehydratase

(SDH) is an enzyme composed of two subunits (beta and alpha, respectively) which may deami-

nate the amino acid serine to yield pyruvate with the release of ammonia (NH3). The level of

SDH beta subunit increased strongly for LS25. Redox-sensing transcriptional repressor Rex also

increased strongly for LS25. This gene regulator is known to respond to an elevated NADH/

NAD+ ratio by differential binding to Rex operators [38]. Among the proteins in group 2 was

NADH oxidase (Nox), which can reoxidize excess NADH formed [4]. This enzyme displayed an

increased expression for both strains, more for LS25 than for 23K. Elevated levels were also seen

for single stranded nucleic acid binding protein and a hypothetical protein.

Proteins in group 3 and group 4 (Fig 5, Table 2 and S4 Fig) displayed a reduction at low

compared with high growth rate for LS25, and for some of the group 4 proteins also for 23K.

The proteins in group 3 comprised adenine deaminase involved in purine metabolism, a hypo-

thetical protein, cell division protein GidA, putative oxidoreductase, CutC family copper

homeostasis protein, putative teichoic acid/polysaccharide glycosyl transferase and folylpoly-

glutamate synthase. Among the proteins in group 4, inosine-uridine preferring nucleoside

hydrolase, involved in nucleoside catabolism and responsible for the conversion of inosine to

ribose and a purine base, was affected in both strains, as was arginyl-tRNA synthetase and

ATP dependent DNA helicase as well. For LS25, reduced expression was also seen for uridine

Effects of glucose availability in Lactobacillus sakei
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kinase involved in pyrimidine metabolism, asparginyl-tRNA synthetase and putative drug

resistance ABC transporter.

Transcriptome responses to reduced glucose availability

At low compared with high growth rate, gene transcripts in group 1 (Fig 5, Table 3 and S5 Fig)

showed strongly elevated levels for LS25, and simultaneously, no change or lower levels were
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Fig 4. PCA of proteins and gene transcripts after variable selection towards the phenome. Proteins and gene transcripts selected by

elastic net (left), where L. sakei strains 23K and LS25 are shown in blue and red, respectively. Squares indicate high growth rate and high

glucose availability. Open triangles indicate low growth rate and restricted glucose availability. The selected proteins and transcripts were

assigned to 4 groups with similar pattern (right), indicated in green, orange, black and red for groups 1–4, respectively.

https://doi.org/10.1371/journal.pone.0187542.g004
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seen for 23K. Genes encoding putative nitroreductase, putative ABC transporter, hypothetical

cell surface protein and putative polysaccharide biosynthesis protein showed this pattern of

regulation. In addition, for LS25, four upregulated genes seemed to be subjected to coordi-

nated regulation, encoding putative 4-carboxymuconolactone decarboxylase, hypothetical

protein, putative MerR family transcriptional regulator and putative oxidoreductase. The nox
gene was also upregulated for LS25, and so were genes encoding hypothetical lipoprotein pre-

cursor, hypothetical protein and dipeptidase U34. Transcripts in group 2 (Fig 5, Table 3 and

S5 Fig) showed increased levels. Increases for both strains were seen for kbl encoding the

enzyme 2-amino-3-ketobutyrate CoA ligase, also named glycine C-acetyltransferase, which

catalyzes the chemical reaction of acetyl-CoA and glycine into CoA and 2-amino-3-oxobu-

tanoate and vice versa. Likely subjected to coordinated regulation with kbl, both strains also

upregulated the gene encoding L-threonine dehydrogenase, that facilitates the catabolism of

threonine by catalyzing conversion to glycine via 2-amino-3-ketobutyrate with concomitant

reduction of NAD+. The gene is annotated with a nonsense mutation in 23K [1], confirmed by

examining the RNA-seq reads (not shown), while it is complete in LS25 [19]. Moreover, for

LS25, three more upregulated genes in group 2 encode hypothetical protein, transcriptional

regulator MraZ and putative S-adenosylmethionine-dependent-methyltransferase, and the

two latter seemed to be subjected to coordinated regulation.

Gene transcripts in group 3 and group 4 (Fig 5, Table 3 and S5 Fig) displayed lower levels at

low compared with high growth rate. The group 3 gene rbsK encodes the ribokinase involved

Table 2. Proteins explaining L. sakei strain differences in phenome end-product profiles from high to low growth rate. Fold change from high to low

growth rate and simple correlation coefficient (r) between selected protein and each end-product are shown. The proteins are assigned to 4 groups with similar

pattern (Figs 4 and 5; S4 Fig).

L. sakei locus tag Fold

changea
Correlation, r

Group 23K LS25 Protein 23K LS25 lactate formate acetate ethanol

1

LCA_0316 LS25_0363 L-serine dehydratase subunit beta (SDH) 0.38 1.36 -0.89 0.88 0.81 0.90

LCA_0848 LS25_0936 Redox-sensing transcriptional repressor Rex 0.41 1.23 -0.93 0.93 0.89 0.96

LCA_0974 LS25_1064 Formate C-acetyltransferase (PFL) 0.91 1.67 -0.90 0.90 0.84 0.93

2

LCA_0802 LS25_0894 NADH oxidase (Nox) 0.74 1.09 -0.95 0.94 0.93 0.95

LCA_1154 LS25_1251 Hypothetical protein 0.47 0.45 -0.85 0.86 0.88 0.83

LCA_1881 LS25_0004 Putative single-stranded nucleic acid binding protein 0.64 0.54 -0.88 0.88 0.90 0.88

3

LCA_0088 LS25_0092 Adenine deaminase -0.59 -2.11 0.86 -0.86 -0.83 -0.87

LCA_1099 LS25_1198 Folylpolyglutamate synthase 0.07 -0.54 0.60 -0.60 -0.53 -0.61

LCA_1440 LS25_1514 CutC family copper homeostasis protein -0.12 -0.74 0.87 -0.87 -0.82 -0.86

LCA_1467 LS25_1541 Hypothetical protein -0.53 -2.09 0.89 -0.88 -0.83 -0.89

LCA_1559 LS25_1643 Putative oxidoreductase -0.29 -0.87 0.87 -0.87 -0.84 -0.87

LCA_1573 LS25_1658 Putative teichoic acid/polysaccharide glycosyl transferase, group

1

-0.15 -0.54 0.89 -0.89 -0.87 -0.85

LCA_1879 LS25_0002 Cell division protein GidA -0.11 -1.01 0.79 -0.78 -0.73 -0.75

4

LCA_0830 LS25_0920 Inosine-uridine preferring nucleoside hydrolase -0.71 -0.60 0.75 -0.75 -0.81 -0.74

LCA_0914 LS25_1000 Asparaginyl-tRNA synthetase -0.05 -0.41 0.86 -0.86 -0.86 -0.83

LCA_1373 LS25_1447 Uridine kinase -0.37 -0.45 0.83 -0.84 -0.88 -0.83

LCA_1421 LS25_1495 Arginyl-tRNA synthetase -0.45 -0.48 0.82 -0.83 -0.88 -0.78

LCA_1552 LS25_1635 ATP-dependent DNA helicase -0.54 -0.77 0.58 -0.59 -0.70 -0.52

LCA_1878 LS25_0001 Putative drug resistance ABC transporter, two ATP-binding

subunits

-0.41 -0.72 0.69 -0.70 -0.77 -0.62

aSignificant (p<0.05) fold change values are shown in bold writing

https://doi.org/10.1371/journal.pone.0187542.t002
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in ribose catabolism. Among genes in group 4, oppD and oppF were strongly downregulated

for both strains. Opp is an ABC transporter encoded by the oppABDCDF operon, and is com-

posed of substrate-binding lipoprotein OppA that binds extracellular peptides, two mem-

brane-spanning transporter permeases, OppB and OppC, and two cytoplasmic ATPases,

OppD and OppF. The gene encoding putative thiosulfate sulfurtransferase was also downregu-

lated for both strains, whereas several transcripts displayed lower level only for 23K, including

putative MIP family facilitator protein, hypothetical protein and hypothetical cell surface

protein.

Discussion

We have investigated the effect of glucose availability in L. sakei strains 23K and LS25 on the

metabolite, proteome and transcriptome levels, where different degrees of response to the

same energy restriction revealed strain specific regulation. Both strains shifted from homolac-

tic fermentation at high growth rate towards more mixed acid fermentation at low growth

rate, also observed by others [13, 16, 24, 39] and a common phenome in LAB [4]. However,

the change was more pronounced for LS25 than for 23K with reduced glucose availability.

The observed metabolic change is attributed to an altered pyruvate metabolism which bene-

fit the bacteria by generating ATP, or by gaining NAD+ for maintaining the redox balance,

where various end-products in addition to lactate are produced [4]. Elevated production level

of formate, more pronounced for LS25, was clearly reflected in the increased expression of
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PFL. Only active anaerobically, the PFL system [40, 41] was shown induced with lowering of

the dilution rate in continuous culture systems also by others [26]. Between various organisms,

shifts in metabolic strategies during growth are regulated in different ways, among which

intracellular redox potential reflected by NADH/NAD+ ratio have been reported for LAB to be

a key sensor [13, 42]. Various regulatory sensors monitor the redox state of all the cellular

components for optimal overall function [43]. The transcriptional regulator Rex responds to

NADH/NAD+ levels and negatively controls expression of genes involved in energy metabo-

lism and fermentative growth in Gram-positive bacteria [38, 44–47]. Elevated protein level,

stronger for LS25 than for 23K during slow growth, suggests this regulatory role for Rex. The

commonality among the Rex-regulated enzymes is that they all function to maintain the

NADH/NAD+ ratio needed to reposition the cells for re-entry into glycolysis. In response to

carbohydrate limitations and/or high intracellular NADH/NAD+ level, the bacterial cells

divert the catabolic pathways away from homofermentation towards mixed acid fermentation.

Under low NADH/NAD+ ratio, Rex protein binds to the target sites and represses transcrip-

tion of genes involved in NADH reoxidation, while the increase of NADH concentration

results in the dissociation of Rex from DNA and thus derepression of its target genes [46, 48].

By comparative genomics approach, Ravcheev et al. [48] inferred 6 candidate Rex-binding

sites located upstream of L. sakei target genes and operons. This included the Rex encoding

gene, and among our selected features, the nox gene. Upregulated nox observed for LS25 dur-

ing slow growth, as well as elevated Nox levels for both strains, but more pronounced for LS25,

could imply regulation by Rex.

The observation that as much as 99% of the variation in the phenome could be accounted

for by only one linear latent variable on the phenome level, with a stronger effect for LS25 than

for 23K, suggests that a simple underlying mechanism could be controlling the effect. Poten-

tially, there may be only one primary mechanism that secondary lead to coordinated changes.

Rex is a candidate for such a primary effect. The elevated level of Nox is dually beneficial with

alternative routes for NAD+ regeneration, and for detoxifying deleterious oxygen metabolites

[1]. Despite a predilection for anaerobiosis, L. sakei is surprisingly well equipped to cope with

changing oxygen and redox levels [1]. Several genes encoding proteins with oxidoreductase

activity upregulated for LS25 also reflect the need to maintain the redox balance. A large arse-

nal of putative oxidoreductases with few homologs among lactobacilli are identified in L. sakei,
indicating an efficient capacity for maintaining redox balance through tight control of the

NADH/NAD+ ratio and the use of various electron acceptors [1].

Interestingly, our present experiment could be considered as an analog for L. sakei to the

extensively studied topic of so-called complete calorie restricted diet, although in the present

study glucose was the limiting factor. Complete caloric restriction is shown as a conserved

mechanism in eukaryotes, from single-celled yeast to humans, to result in expanded healthy

life span in response to a reduction of energy intake [49–52], and is found to act through

mechanisms involving the redox balance [53]. For L. sakei, serine and threonine possibly enter

the pyruvate pool after enzymatic conversion by SDH and L-threonine dehydrogenase at

restricted glucose availability. Indeed, the level of SDH increased at low growth rate in LS25,

and higher consumption of threonine was detected. The L-threonine dehydrogenase gene

transcripts were upregulated in both strains at low growth rate. This gene contains a nonsense

mutation in 23K [1]. However, the gene product(s) may still form an active enzyme. Complete

caloric restricted diets in eukaryotes leads to elevated levels of gluconeogenic enzymes and

transaminases of several amino acids [54], and specifically it has been shown that SDH is criti-

cal for serine utilization in gluconeogenesis [55].

An interesting difference between the two strains seemed to lay in the catabolism of argi-

nine. Consumption of this amino acid and concominant production of citrulline and ornithine
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reflected the activity of the ADI pathway, seemingly more active in 23K than in LS25. The abil-

ity to utilize arginine as an energy source to generate ATP, which represents a competitive ben-

efit in the low carbohydrate containing meat environment, has been thoroughly studied in L.

sakei, however only for a few strains [10, 11, 35–37, 56, 57]. A second putative ADI pathway

(LCA_0067–0073), present in 23K and suggested to further enhance its ability to survive in the

meat environment [1], is not present in LS25 [19, 23]. By comparative genome hybridization

using a microarray based on the 23K genome, this second putative ADI pathway was reported

present in 10 of 18 L. sakei strains investigated [23]. Hence this second pathway may play a role

in arginine catabolism under certain conditions. Mixed acid fermentation yields one extra ATP

per glucose over homolactic fermentation [4]. Concominant with this higher ATP yield at slow

growth, the bacterium also seemed to downregulate various pathways for saving energy, as seen

for both strains in lower level of the ATP dependent helicase and proteins involved in purine/

pyrimidine metabolism, as well as downregulation of genes encoding membrane proteins

involved in oligopeptide uptake (opp genes) and glycerol uptake (MIP family facilitator protein).

Biomass yield in L. sakei declined in slow growing cells. This might appear counterintuitive at

first, since at slower growth rates cells adopt a metabolic strategy that results in a higher ATP

yield per glucose consumed. However, this might not necessarily manifest itself as higher bio-

mass yield since the gain in efficiency on the catabolism of the substrate, can be (and often is)

offset by the increasing proportion of the cellular ATP requirements that get allocated from

growth to maintenance (e.g. protein and nucleic acid repair) [58, 59].

It is clear from both the proteome and transcriptome changes in response to glucose avail-

ability that maintaining the redox balance is crucial for the optimum growth and survival of L.

sakei. However, strain variation exists on how the redox and energy state are sensed and regu-

lated to ensure an optimal outcome for the different cells. Investigations of a larger set of

strains could elucidate whether the variation is strain-specific or specific to the two different

subspecies, carnosus and sakei.
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S1 Fig. PCA on all features of the proteome. PCA of the proteome (all 643 variables) mean

centered and standardized to unit variance. Score plots (left) and loading plots (right) on PC3

(x-axis) vs PC4 (y-axis) and PC5 (x-axis) vs PC6 (y-axis). L. sakei strains 23K and LS25 are

shown in blue and red, respectively. Squares indicate high growth rate and open triangles indi-

cate low growth rate.

(PDF)

S2 Fig. PCA on all features of the transcriptome. PCA of the transcriptome (all 1632 vari-

ables) mean centered and standardized to unit variance. Score plots (left) and loading plots

(right) on PC3 (x-axis) vs PC4 (y-axis) and PC5 (x-axis) vs PC6 (y-axis). L. sakei strains 23K

and LS25 are shown in blue and red, respectively. Squares indicate high growth rate and open

triangles indicate low growth rate.

(PDF)

S3 Fig. Elastic net coefficient and cross-validation curves. Coefficient curves (left plots) dis-

play the coefficients of each variable (the proteome or the transcriptome) in different colors

with increasing number of variables in the model as the regularization parameter and thereby

the L1-norm (sum of the absolute value of regression coefficients) changes. Cross-validation

curves (right plots) are displayed in red, upper and lower standard deviation curves in grey, for

the prediction of the phenome (lactate, formate, acetate and ethanol) based on input variables.

MSE refers to Mean Square Error.

(PDF)

S4 Fig. Proteins that responded to changed glucose availability in L. sakei. The proteins (P)

are listed by 23K locus tag (LCA_XXXX), protein name and group according to Table 2.

Strains 23K and LS25 are shown in blue and red, respectively. Squares indicate high growth

rate and open triangles indicate low growth rate. The proteins were selected by elastic net

repeated 1000 times using alpha tuning parameter 0.5 and regularization parameter lambda

set to log.lambda.min, followed by confidence intervals within each strain.

(PDF)

S5 Fig. Gene transcript that responded to changed glucose availability in L. sakei. The gene

transcripts (T) are listed by 23K locus tag (LCA_XXXX), gene product name and group

according to Table 3. Strains 23K and LS25 are shown in blue and red, respectively. Squares

indicate high growth rate and high glucose availability. Open triangles indicate low growth

rate and restricted glucose availability. The gene transcripts were selected by elastic net

repeated 1000 times using alpha tuning parameter 0.5 and regularization parameter lambda
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(PDF)
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