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ABSTRACT 10 

Alternative genomic selection and traditional BLUP breeding schemes were compared for 11 

the genetic improvement of feed efficiency in simulated Norwegian Red dairy cattle populations. 12 

The change in genetic gain over time and achievable selection accuracy were studied for milk yield 13 

and residual feed intake, as a measure of feed efficiency. When including feed efficiency in 14 

GBLUP schemes it was possible to achieve high selection accuracies for genomic selection, and 15 

all GBLUP schemes gave better genetic gain for feed efficiency than ABLUP (Best Linear 16 

Unbiased Prediction using pedigree relationship matrix). When using contracted test herds with 17 

genotyped and feed efficiency recorded cows as a reference population, a reference population 18 

size of 4,000 new heifers per year was needed in order to achieve considerable genetic 19 

improvement of feed efficiency. With such a reference population it was possible to reach similar 20 

selection accuracies of 0.75 for males than when using progeny testing. It was concluded that the 21 

use of contracted test herds with additional recordings (e.g. feed efficiency) is a viable option, 22 
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possibly by international collaborations, for the genetic improvement of such difficult to record 23 

traits. 24 

 25 
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 27 

INTRODUCTION 28 

Improving feed efficiency is economically important because feed costs comprise the 29 

majority of the variable cost in the dairy industry. Hence, there are already some countries who 30 

have included feed efficiency in their breeding goals (Pryce et al., 2014). Having access to accurate 31 

and low-cost feed efficiency measurements is difficult hence; a lot of research efforts are devoted 32 

to this problem (de Haas et al., 2012; Veerkamp et al., 2013). The main problem in including feed 33 

efficiency in the breeding objective is to have access to phenotypic data from a large population 34 

of animals, and that are daughters of progeny tested bulls. Since genomic selection can be based 35 

on fewer phenotypes than traditional selection, genomic selection could be a useful tool to improve 36 

feed efficiency. 37 

Genomic selection uses dense markers covering the whole genome and it addresses most 38 

of the genetic differences between the animals (Meuwissen et al., 2001). The total genetic value 39 

of selection candidates is predicted based on the estimation of SNP effects, which are estimated 40 

using reference individuals that have been genotyped and phenotyped. If the training set is large 41 

enough and relevant to the selected population, genomic selection can result in an increase in the 42 

accuracy compared to traditional selection (VanRaden et al., 2009).  The number of individuals in 43 

the training set and the marker density have the greatest impact on accuracy (Goddard, 2009; Hayes 44 

and Goddard, 2008). Other factors are heritability (Daetwyler et al.,2008; Goddard, 2009), 45 
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effective population size (Ne), the effective number of segments (Goddard, 2009), relationship 46 

between the evaluated animals and training data set (Habier et al., 2010; Wolc et al., 2011; Pszczola 47 

et al., 2012) and variance of relationships within the reference population (Habier et al., 2010). For 48 

the traits that have low heritabilities, a very large number of records will be required in the training 49 

data set in order to achieve high accuracies of GEBV in unphenotyped animals (Hayes et al., 2009). 50 

One possibility to overcome the limited size of the training set is to combine data across countries 51 

as in the global Dry Matter Iniative (gDMI) (de Haas et al., 2012).  52 

 In this study, stochastic simulation was used to investigate how different breeding schemes 53 

affect genetic gain without treating accuracy as a fixed value, but rather as an outcome of the 54 

simulation. By using stochastic simulation, it is also possible to study complex and overlapping 55 

generations and the changes in accuracy over time under different schemes (Lillehammer et al., 56 

2011a). We used residual feed intake (RFI) as a measure of feed efficiency. RFI is defined as the 57 

difference between actual and predicted feed (or energy) intake based on the requirements of the 58 

animal (Koch et al., 1963; Williams et al., 2011; Berry and Crowley, 2013). The benefits of GS 59 

are greatest when selection is for difficult to measure traits, whose recording is either too expensive 60 

or phenotypes are not easily accessible (Goddard, 2009). Both these arguments justify the use of 61 

GS for improving feed efficiency (FE), because FE recording is too expensive to be carried out on 62 

large numbers of cows and the feed efficiency of milk production cannot be recorded on bulls. In 63 

this study, genomic selection strategies were developed for improving feed efficiency in 64 

Norwegian Red dairy cattle. The objectives of this research were to compare strategies for 65 

improving selection accuracy and genetic gain for FE by estimating SNP effects in experimental 66 

herds with feed efficiency recordings or in large-scale field recordings of FE. Thus, we investigate 67 
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whether it is possible to use contracted test herds with additional recording for improving traits 68 

that are difficult to measure such as feed efficiency.   69 

 70 

MATERIALS AND METHODS 71 

Historical populations were simulated in order to create realistic associations between 72 

markers and genes and to create founder populations for the breeding schemes. In order to create 73 

these associations and a mutation-drift balance the simulations consisted of 2,000 generations of 74 

random mating following the Fisher-Wright population model (Fisher, 1930; Wright, 1931). The 75 

founder population had an effective population size of 200 (100 males and 100 females) (Hillestad 76 

et al., 2014). The simulated genome consisted of 30 pairs of chromosomes; each was 100 cM in 77 

length. The expected number of mutations per meiosis per diploid chromosome was two. 78 

Polymorphisms and recombinations were simulated following Sonesson and Meuwissen (2009). 79 

From the created SNPs 3,000 were randomly selected as QTLs, and QTL effects were sampled 80 

from a Normal distribution. Per chromosome 500 SNPs were randomly sampled to be used as 81 

genetic markers in the breeding scheme, i.e. a total of 15,000 markers.  82 

Seven different breeding schemes were investigated; basic, MY+FE population wide and 83 

five test herd simulations. In the basic breeding scheme, only milk yield (MY) was included in the 84 

breeding goal. Whereas, in MY+FE and test herd simulations milk yield and residual feed intake 85 

(RFI) as a feed efficiency trait were included in the breeding goal and they were assumed to be 86 

uncorrelated (since RFI as a measure of FE is not correlated to MY) and have equal economic 87 

weights (in all the other breeding schemes except test herd 4,000 eco25 and test herd 4,000 eco50 88 

schemes). In eco25 scheme, FE had ¼ of the economic weight of milk yield whereas in eco50 89 

scheme FE had ½ of the economic weight of milk yield. In test herd simulations, FE test herds 90 
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were set up (contracted), where RFI and MY were recorded. These test herds varied in total size 91 

(500, 1,000 and 4,000) between the schemes. Basic and MY+FE schemes were investigated with 92 

both genomic selection (Meuwissen et al., 2001) and with traditional BLUP selection (ABLUP; 93 

Henderson, 1975). Test herd simulations were investigated only with genomic selection.  94 

In basic schemes, all cows got records only for milk yield at age 3 (Table 1 and Figure 1). 95 

Whereas, in MY+FE schemes all cows had records for both milk yield and RFI at age 3. In test 96 

herd schemes, the test herd females had records for both RFI and milk yield at age 3, while other 97 

cows had records for milk yield only. No repeated records were assumed for any of the traits, 98 

which is conservative with respect to the amount of information that comes from recording a cow. 99 

Females were available for selection at ages 2,3,4,5,6 years. All ages refer actually to the average 100 

generation interval that results from their mating, i.e. the actual mating occurs 9 months earlier. 101 

Males were selected to be parents at age 3 in GBLUP and at age 6 in ABLUP schemes. Males 102 

were progeny tested for both milk yield and RFI in MY+FE schemes; progeny test results were 103 

available at age 6 (Table 1, Figure 1). Whereas, in the basic and test herd schemes males were 104 

progeny tested only for milk yield. The progeny test information was hence available when 105 

selecting sires in the ABLUP-schemes, but not in the GBLUP-schemes, due to the shorter 106 

generation interval. In GBLUP-schemes, progeny information was used to update the reference 107 

population. One-third of the females were culled randomly every year starting when they were 3 108 

years old. Females in the test herds and bull calves born from elite matings were assumed 109 

genotyped in GBLUP schemes.  110 

A base generation (generation 0) was created using the animals from the last generation of 111 

the founder population and mating them randomly. All 4,000 animals in generation 0 were 112 

assumed genotyped and progeny tested in all the schemes, which involved genomic selection and 113 
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those animals were used to estimate SNP effects for milk yield and RFI. The younger bulls were 114 

added to the simulated reference population when they got their progeny test records for 115 

production traits. The simulated breeding schemes closely resembled those of Lillehammer et al. 116 

(2011) where earlier progeny-tested bulls were genotyped and used to estimate SNP effects. 117 

True breeding values (TBV) were calculated for all individuals as the sum of the QTL 118 

effects: 119 

𝑇𝐵𝑉𝑖  = ∑ 𝑥𝑖𝑗1𝑔𝑗1 +  𝑥𝑖𝑗2𝑔𝑗2

𝑁𝑢𝑚𝑏.𝑜𝑓 𝑄𝑇𝐿

𝑗=1

 120 

 121 

where 𝑥𝑖𝑗𝑘 is the number of copies that individual 𝑖 has at the 𝑗th QTL position and 𝑘th QTL 122 

allele, and 𝑔𝑗𝑘 is the effect of the 𝑘th  QTL at the 𝑗th  position which were sampled from the Normal 123 

distribution. The simulated traits, milk yield and residual feed intake, were assumed to have 124 

heritabilities of 0.3 and 0.15, respectively. Those heritabilities reflect the average heritability of 125 

milk production (Berry et all., 2003; Hoekstra et all., 1994) and the average heritability of feed 126 

efficiency traits (Berry and Crowley, 2013; Varga and Dechow, 2013).  127 

The accuracy of the genomic breeding values was calculated, according to Sonesson and 128 

Meuwissen (2009), as the correlation between the estimated genomic breeding values and the true 129 

breeding values. Genomic breeding values were estimated by summing the marker effects: 130 

𝐺𝐸𝐵𝑉𝑖 = ∑ 𝑥𝑖𝑗𝑎𝑗 ,

𝑛

𝑗=1

 131 

  132 

where  𝑎𝑗 is the BLUP estimate of the 𝑗th SNP effect and 𝑛 is the number of SNPs (15,000). To 133 

ensure that direct comparison between traditional and genomic EBVs was possible all EBVs were 134 
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scaled so that 𝑏 = 1 where 𝑏 = 𝐶𝑜𝑣(𝑇𝐵𝑉𝑖; [𝐺]𝐸𝐵𝑉𝑖) / 𝑉𝑎𝑟([𝐺]𝐸𝐵𝑉𝑖). This is important for the 135 

selection of females which is across GEBV and traditional EBV for some of the schemes.   136 

Phenotypes were simulated by adding a normally distributed random error term to the true 137 

breeding value: 138 

𝑃𝑖 = 𝑇𝐵𝑉𝑖 +  𝜀𝑖, 139 

  140 

where 𝜀𝑖 is an error term for animal 𝑖, which was normally distributed (0, 𝜎𝑒
2). In order to 141 

express the results in genetic standard deviations (SD) and create phenotypic records with the 142 

desired heritability the genetic variance (𝜎𝑔
2) was scaled to 1 for both of the traits and the residual 143 

variance (𝜎𝑒
2) was adjusted following Sonesson and Meuwissen (2009).  144 

The value of 1 genetic standard deviation of milk yield was arbitrary set to 100 monetary 145 

units. When the economic value of RFI equaled that of milk yield, a genetic standard deviation of 146 

RFI represented also 100 monetary units. In schemes with reduced economic values for RFI, eco50 147 

and eco25 schemes, one genetic standard deviation of RFI represented 50 and 25, monetary units 148 

respectively.     149 

The BLUP method (Meuwissen et al., 2001) was used for the estimation of marker effects. 150 

The statistical model used to estimate individual marker effects was: 151 

𝑦𝑖 =  𝜇 +  ∑ 𝑋𝑖𝑗𝑎𝑗 +  𝑒𝑖

𝑛

𝑗=1

, 152 

 153 

where 𝑦𝑖 is the record of individual 𝑖; 𝜇 is the overall mean; 𝑋𝑖𝑗 is the marker genotype; 𝑎𝑗 is the 154 

random effect of the 𝑗th marker, with variance equal to the total genetic variance divided by the 155 

number of markers; and 𝑒𝑖 is a random residual.  156 
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  Simulated population sizes were smaller than those of the real Norwegian Red 157 

dairy cattle population in order to make stochastic simulation computationally possible. Population 158 

sizes were rescaled as described by Lillehammer et al. (2011), so that selection steps for 159 

conformation traits of bulls and bull dams were not considered in the simulation and selection 160 

intensities for the included traits were maintained at realistic levels when population size was 161 

reduced.  The ABLUP schemes were designed to mimic the breeding structure of Norwegian Red 162 

before implementation of genomic selection, while the GBLUP-schemes mimic the current 163 

breeding structure of Norwegian Red after genomic selection was implemented. 164 

For each scheme, 50 replicates were run and simulations were performed for 20 years. 165 

Genetic gain and selection accuracy for males and females were reported as an average over years 166 

10 to 20 of the simulations. In all the schemes, total genetic gain was calculated by summing up 167 

the genetic gain (in monetary units) for milk yield and RFI. When results of the simulation study 168 

are reported, omitting the first years of the simulation avoids the problem of the non-steady-state 169 

population structure at the start of the scheme, where all animals are of the same age and that all 170 

base generation animals are assumed to be genotyped and progeny tested, which affects early 171 

simulation results.  172 

  173 

RESULTS 174 

Figure 2 shows the total genetic gain (in monetary units) for milk yield and residual feed 175 

intake when RFI was included in the breeding scheme. The highest total genetic gain was found 176 

when using the MY+FE GBLUP scheme, where bulls were progeny tested for both traits. ABLUP 177 

schemes gave lower total genetic gain when compared to a similar GBLUP scheme. Increasing the 178 

number of cows in the test herds caused an increase in genetic gain. Genotyping 500 or 1,000 cows 179 
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in test herds resulted lower genetic gain than using progeny test records to update the reference 180 

population. Whereas, test herd size of 4,000 cows gave slightly lower genetic gain than MY+FE 181 

GBLUP scheme. Using smaller economic values for feed efficiency in test herd 4,000 GBLUP eco 182 

schemes decreased the total genetic gain. 183 

As expected, the basic scheme gave the highest genetic gain for milk yield of the ABLUP 184 

schemes (Table 2 and Figure 3), and GBLUP schemes gave higher genetic gain for milk yield than 185 

similar ABLUP schemes. As expected, introducing a second trait in the breeding goal reduced 186 

genetic gain for milk yield. Which is due to the fact that if selection pressure is devoted to more 187 

traits the progress for each of the original traits reduces.  188 

The highest genetic gain for residual feed intake was reached using the MY+FE GBLUP 189 

scheme (Table 2 and Figure 4), where all cows had RFI records. Obtaining RFI records from test 190 

herds of limited size gave less gain for RFI, but increasing the number of genotyped cows in the 191 

test herd schemes increased the genetic gain for RFI. At a test herd size of 4,000 genotyped cows, 192 

the genetic gain for RFI was very similar to obtaining records from all cows in the population. As 193 

expected, test herd 4,000 GBLUP eco schemes gave lower genetic gain for RFI than other GBLUP 194 

schemes where RFI was included, which is due to the smaller economic value for RFI in eco 195 

schemes.    196 

Selection accuracies for males ranged from 0.65 to 0.79 in GBLUP schemes and 0.94 to 197 

0.96 in ABLUP schemes (Figure 5 and Table 3). Using lower economic values for RFI in the test 198 

herd 4,000 GBLUP eco schemes slightly increased the selection accuracy for males (Figure 5). 199 

Whereas, the selection accuracy for females was approximately 0.6 in all the other schemes except 200 

the test herd schemes (Table 3). The test herd scenarios caused a decrease in the selection accuracy 201 

for females because only a fraction of the females obtained RFI-records. However, increasing the 202 



10 
 

test herd size resulted an increase in the female selection accuracy. The highest selection accuracy 203 

for females was reached using basic schemes, where the breeding goal included only MY.  204 

  205 

DISCUSSION 206 

 This study compared different implementations of genomic selection and traditional BLUP 207 

selection for the genetic improvement of feed efficiency, and investigated how the genetic gain 208 

accumulates over time and which selection accuracies are achievable when increasing the number 209 

of genotyped females in the reference population. We used residual feed intake as a feed efficiency 210 

trait, since it is by definition the component of feed intake that is uncorrelated to milk yield. 211 

Practical breeding schemes may select directly for MY and against feed intake, but also here only 212 

the component that is uncorrelated to milk yield will be reduced, whereas the component of feed 213 

intake that is associated with MY will increase together with the general increase in MY. 214 

Table 3 showed that it is possible to achieve high selection accuracies for males when 215 

including feed efficiency in GBLUP schemes. This can be done either by obtaining phenotypes 216 

from all cows in the population and hence get progeny information for genotyped bulls that can be 217 

used to update a reference population, or by updating the reference population through genotyping 218 

of cows with records. The latter will be preferable if genotyping is cheap compared to phenotyping. 219 

When using genomic selection to improve low heritability traits the number of records in the 220 

reference population has to be sufficiently large in order to achieve high selection accuracies 221 

(Hayes et al., 2009). Our study showed that 4,000 cows had to be phenotyped and genotyped every 222 

year to achieve similar selection accuracy of genomic selection as if all cows were phenotyped, 223 

but only bulls genotyped.  224 
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Females were always selected on ABLUP, except in test herd schemes, where the 225 

genotyped test-herd females obtained genomic breeding values. The female selection accuracy 226 

where hence first of all affected by whether the females had records for the trait under selection or 227 

not, giving higher female selection accuracy for schemes where phenotypes for all traits under 228 

selection were available for the entire cow population (Table 3). When test herds were used, the 229 

females belonging to these herds will have more accurate breeding values than the cows outside 230 

the test herds, due to their phenotypes and genotypes. The female selection accuracy will hence 231 

depend on the fraction of the cows that are included in the test herds.  232 

Genetic gain will depend on both male and female selection accuracy, although the male 233 

selection accuracy has the highest impact because of the higher intensity of selection. Genetic gain 234 

was therefore similar in Test herd 4k GBLUP as in MY+FE GBLUP, reflecting the similar 235 

accuracy of the genomic breeding values in the two schemes. The small advantage of MY+FE 236 

GBLUP, compared to Test herd 4k GBLUP may increase if a more intense selection of females is 237 

used. However, if selection of females were also based on genomic selection, this difference could 238 

disappear, as the fraction of the female population with RFI-phenotypes becomes less important. 239 

The general level of the genetic gains agree with those found by Lillehammer et al., 2011. 240 

We also investigated how reduced economic values for RFI affect the genetic gain and the 241 

accuracy of selection by comparing the test herd 4,000 GBLUP at a half and a quarter of its original 242 

economic value of RFI. As expected, test herd 4,000 GBLUP eco schemes gave higher genetic 243 

gain for milk yield and lower genetic gain for RFI compared to other schemes. Lower economic 244 

values for RFI increased the selection accuracy of both males and especially females, since much 245 

more phenotypes were available for milk yield than for RFI in the test herd scheme. Total genetic 246 

gain was reduced for the schemes with lower economic values for RFI. To build up test herds to 247 
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facilitate genomic selection for traits with low economic value, might hence not be economically 248 

defendable, as the expected gain is sensitive to the weight put on these traits. 249 

In these simulations, we assumed a large reference population at the start of the breeding 250 

scheme, which might be optimistic. However, Figure 5 shows that genomic selection accuracies 251 

during years 10-20 remain stable, implying that the gain of accuracy due to the genotyping of new 252 

relevant reference animals is compensated for old reference animals becoming less relevant, i.e. 253 

the start reference population is becoming less and less relevant during years 10-20. The results of 254 

Table 3 and Figure 5 show that if progeny testing for feed efficiency is not feasible: genotyping 255 

females in test herds that enter a reference population may compensate the lack of progeny testing. 256 

However, this requires the genotyping and phenotyping of 4,000 test females annually, since 257 

smaller test herd sizes resulted in markedly reduced genetic gains. Obtaining large amounts of 258 

animals with multiple recordings is possible using for example collaboration between countries 259 

(de Haas et al., 2012; Veerkamp et al., 2013) or milk MIR predicted feed efficiency records. In 260 

2014 McParland et al. showed that mid-infrared (MIR) spectrometry of milk could be used to 261 

predict residual feed intake (RFI) as a measure of feed efficiency in lactating dairy cows. Since, 262 

individual animal milk samples are routinely taken as part of the dairy herd management, using 263 

these samples to also predict feed intake and efficiency would be cost-effective and a relatively 264 

undemanding approach to obtain large numbers of feed efficiency phenotypes.  265 

In this study, we used RFI as a measure of feed efficiency. However, earlier studies showed 266 

that weak unfavorable genetic correlations exist between RFI and fertility (Vallimont et al., 2013). 267 

This is probably due to the mathematical similarity in the calculations of RFI and energy balance 268 

and a failure to account correctly for body tissue mobilization which might lead to selection for a 269 

trait that is similar to selecting for a negative energy balance (Pryce et al., 2014). Therefore, genetic 270 
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correlations with other traits (especially fertility traits) must be accounted for when including RFI 271 

into the breeding scheme (Pryce et al., 2014). I.e. a multi-trait selection index where genetic 272 

correlations with other traits are properly accounted for, is required if RFI is to be included in the 273 

selection objective. 274 

Feed efficiency is a trait that is difficult to measure and as such difficult to include in the 275 

routine progeny test evaluations. Our results show that for these kind of traits, the use of rather 276 

large contracted test herds with additional recording is a viable option.  This strategy would give 277 

close to similar accuracy of genomic selection as recording this trait in the whole female 278 

population. This implies that the male selection, which is the most intense selection, would be as 279 

effective with contracted test herds of genotyped females as when a routine progeny test would be 280 

performed for this trait, as long as a sufficient number of cows (4,000) is included in the test herds.  281 

 282 
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 383 

Table 1. Ages at which recording and selection take place. 384 

 Age of dam Age of sire 

Milk record 

dam 

RFI record 

dam 

Progeny test 

sire 

Basic ABLUP 2-6 yr 6 yr 3 yr - 6 yra 

Basic GBLUP 2-6 yr 3 yr 3 yr - 6 yra 

MY+FE ABLUP 2-6 yr 6 yr 3 yr 3 yr 6 yrb 

MY+FE GBLUP 2-6 yr 3 yr 3 yr 3 yr 6 yrb 

Test herd GBLUP 2-6 yr 3 yr 3 yr 3 yra 6 yrb 

Ages refer to the generation interval resulting from the mating of the parents (selected for the 385 

indicated record). 386 
abreeding goal includes only milk yield  387 
bbreeding goal includes both RFI and milk yield 388 
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 389 

Figure 1. Overview of the breeding schemes. Solid lines with a cross represent matings and dashed 390 

arrows represent progeny produced by the matings. Dotted arrows represent that animals move 391 
from one category to another due to aging. Solid arrows represent selection of animals. 392 
aIn ABLUP schemes 125 male calves were progeny tested and 12 elite sires were selected. 393 
bIn GBLUP schemes 750 male calves were progeny tested  and 40 elite sires were selected. 394 
 395 
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 396 

Figure 2. Total genetic gain measured as monetary units relative to year 10 onwards. In basic 397 

scheme, genetic gain is only for milk yield whereas in MY+FE and test herd schemes genetic gain 398 
is the total genetic gain when summing up the genetic gain for both residual feed intake and milk 399 
yield. 400 
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 401 

Table 2. Average genetic gain (∆𝐺) as monetary units with standard errors when h2 = 0.3 for milk 402 
yield and h2 = 0.15 for residual feed intake. 403 

  Milk yield Residual feed intake 

Breeding ABLUP GBLUP ABLUP GBLUP 

schemea ∆G ∆G ∆G ∆G 

Basic 19.64 (0.2) 28.52 (0.2) -b -b 

MY+FE 14.76 (0.2) 21.74 (0.3) 12.45 (0.2) 17.28 (0.3) 

Test herd 500 - 18.37 (0.3) - 12.49 (0.2) 

Test herd 1,000 - 18.99 (0.3) - 13.88 (0.3) 

Test herd 4,000 - 20.06 (0.3) - 17.18 (0.2) 

Test herd 4,000 eco25 - 28.74 (0.06) - 1.23 (0.06) 

Test herd 4,000 eco50 - 26.08 (0.15) - 5.21 (0.13) 

Average of genetic gain measured as genetic SD of years 10 to 20. The value of 1 genetic standard 404 
deviation of milk yield was arbitrary set to 100 monetary units.  In eco50 and eco25 schemes, one 405 

genetic standard deviation of RFI represented 50 and 25, monetary units respectively.     406 
aMY+FE and test herd schemes include both milk yield and residual feed intake in the breeding 407 
goal; basic scheme includes only milk yield. 408 
bResidual feed intake is not included in the basic scheme. 409 

 410 
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 411 

Figure 3. Genetic gain for milk yield measured as monetary units relative to year 10 onwards.  412 

 413 
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 414 

Figure 4. Genetic gain for residual feed intake measured as monetary units relative to year 10 415 

onwards. 416 



24 
 

 417 

Figure 5. Selection accuracy for males relative to year 10 onwards. MY+FE and test herd schemes 418 
include both milk yield and residual feed intake in the breeding goal; basic scheme includes only 419 

milk yield. 420 
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 421 

Table 3. Average selection accuracy of years 10 to 20 for males (M) and females (F) in the total 422 
breeding goal with standard errors when h2 = 0.3 for milk yield and h2 = 0.15 for residual feed 423 
intake. 424 

Breeding  

Schemea 

ABLUP GBLUP ABLUP GBLUP 

Accuracy M Accuracy M Accuracy F Accuracy F 

Basic 0.96 (0.0005) 0.75 (0.002) 0.61 (0.002) 0.62 (0.001) 

MY+FE 0.94 (0.0007) 0.72 (0.002) 0.58 (0.001) 0.59 (0.001) 

Test herd 500 - 0.65 (0.002) - 0.21 (0.003) 

Test herd 1,000 - 0.67 (0.002) - 0.24 (0.003) 

Test herd 4,000 - 0.75 (0.001) - 0.42 (0.003) 

Test herd 4,000 eco25 - 0.79 (0.001) - 0.60 (0.002) 

Test herd 4,000 eco50 - 0.78 (0.002) - 0.53 (0.004) 

aMY+FE and test herd schemes include both milk yield and residual feed intake; basic scheme 425 
includes only milk yield. 426 

 427 

 428 

 429 
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