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G R A P H I C A L A B S T R A C T

A B S T R A C T

A novel baseline estimation procedure building on previously published works is presented.
� The core of the estimation is an iterative spectrum suppression consisting of a moving window minimum
replacement (adapted from Friedrichs [1]).

� Four, easily understandable, parameters control placement of the baseline relative to the noise band around the
signal (adapted from Eilers [2]) and the flexibility in different situations.

� The method is especially suited for non-linear baselines with local variations and for resolving peak clusters in
qualitative analyses.
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ethods

There are four main ingredients in the 4S Peak Filling baseline estimation procedure. These are
escribed below, one S at a time. Supporting the descriptions are illustrating figures with spectra from
atrix assisted laser desorption/ionisation time-of-flight (MALDI-TOF) [3] and laser induced
reakdown spectroscopy (LIBS) [4]. The former is included to illustrate the effects of the different
teps of the algorithm, while the latter presents a problem where the proposed method handles a
hallenging baseline estimation where other tested methods fail. An R [5] implementation with
ection numbers corresponding to this article is freely available in the ‘baseline’ package in the
omprehensive R Archive Network repository.

moothing

Before baseline estimation is performed on the spectra, they are smoothed by applying a penalty on
heir second derivative; see Fig. 1 and Section S1 in the R code. This is achieved using the Whittaker
moother as described in Eilers’ article on a perfect smoother [6]. Other smoothers may have the
esired effects, but the Whittaker smoother is a quick and well-tested basis for smoothing and
aseline estimation.
There are two important effects of applying a smoother. First of all, it limits spurious noise peaks

hat are of no interest in the baseline estimation. More importantly it gives the user the possibility of
entring the baseline in the noise band around the signal spectrum by adjusting the smoothing
arameter, thus giving a more realistic zero signal for most types of spectra. It does not matter that real
eaks may be shrunk severely in the smoothing as this does not harm the baseline estimation. If no
moothing is performed, the baseline will be placed in the bottom of the noise band.

ubsampling

Instead of estimating the baselines directly on the spectra, a simple binning is performed first; see
ig. 2 and Section S2 in the R code. The number of bins is chosen by the user, and the minimum value in
ach bin is used as a local representative of the spectrum. The subsampling serves two goals. Firstly, it
ncreases the efficiency of the algorithm with regard to the number of local windows it will work in,
hus reducing the number of iterations needed to suppress the baseline. Secondly, it simplifies the
hape of the spectrum while retaining the basic shape of the baseline.
If the baseline needs to be flexible or very steep, e.g. because of dominating fluorescence in Raman

pectroscopy, a high number of bins is needed, while a more linear and flat baseline can be represented
y very few bins. A good starting point is to have one bin per 10 spectrum values and then adjust the
umber according to visual inspection or subsequent analysis performance. Too many bins may cause

 baseline that rises into peaks, while too few bins may cause the baseline to “detach” from the
pectrum (too low estimate) if the true baseline is highly concave. For spectra having regions of both
haracteristics, bin widths may need to be varied along the spectra (see Fig. 6).
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Fig. 1. Smoothing of the original MALDI-TOF spectrum by Whittaker (l = 104).
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Suppression

The main part of the algorithm is the iterative suppression; see Fig. 3 and Section S3 in the R code. A
window is moved along each spectrum similar to the median window method [1]. There are four
features that set the strategies apart. Firstly, the minimum of the current value and the mean value in
the window is used instead of the median value. A well-chosen window width and a corresponding
number of buckets will ensure that the minimum is sufficiently low but not below the perceived
baseline.

The second feature is that the current spectrum is updated for each move of the window instead of
estimating all minima before updating the spectrum. The effect is a quicker convergence, and a
directional effect. The latter means that the window has to be moved in both directions, first sliding it
to the right and then back again, to avoid a biased estimation around peaks.

The third feature is that the window is shrunken logarithmically for each completed window
movement right and left, ending up at a width of �1 wavelength/mass. By this shrinking we increase
the effectiveness by allowing wide windows in the first iterations while reducing the chance of ending
up with a too low baseline.

The last feature is that the window is symmetrically shrunk when close to the ends of the spectra.
This is done to avoid too low minima when the baseline is steep toward the ends, which can be the case
for spectra like those of MALDI-TOF or Raman spectra with dominating fluorescence.

The number of passes the window moves right and left over the spectra is a user chosen parameter.
This parameter is tightly connected with the number of bins and affects the baseline in a similar
manner. Too few iterations will lead to a baseline raising into the peaks. If the baseline is relatively flat,
too many iterations will not harm the estimation. But if the true baseline is highly concave, too many
iterations may have the same baseline “detaching” effect where the baseline is estimated too low. A
possible extension of the algorithm could be to also include a convergence criterion to stop the
iterations early when changes are small.
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Fig. 2. Subsampling of smoothed MALDI-TOF spectrum, reducing resolution from 4000 to 150 m/z values.

m/z

In
te

ns
ity

6000 8000 10000 12000

40
0

80
0

12
00

Fig. 3. Iterative suppression of baseline from smoothed, subsampled MALDI-TOF spectrum. A window width of �15 points and
20 iterations was used.
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Aiming for a baseline having little flexibility and interpreting the area around 12,000 m/z in the
ALDI-TOF spectrum as a peak cluster rather than a rise in the baseline lead to the choice of a wide

relative to the 150 bins) window width (�15 points). The large width of the mentioned peak cluster
eant that a high number of iterations were also needed (20). A starting point when adapting the
arameters to a new set of spectra is to choose a window width approximately covering the width of
he widest peak and 10 iterations before starting to adjust the parameters.

tretching

The final stage of the algorithm consists of interpolating the estimated baseline back to full
pectrum length; see Fig. 4 and Section S4 in the R code. Because of the choice of minimum values, we
an place the estimated baseline at the centre points of the buckets and find the remaining values
sing simple, linear interpolation for speed and robustness or a set of properly constrained smoothing
plines for better smoothness.

ubtraction

If the baseline estimation is used for baseline correction, we have to subtract the final baseline from
he original spectrum as has been done in Fig. 5. We observe that the zero line has been well centred in
he noise band. The baseline was chosen to be rigid enough to retain all the small peaks, e.g. around
000 and 8000 m/z. By using more buckets and a smaller window width it is possible to place the
aseline in the peak cluster around 12,000 m/z so that the peaks are better resolved as indicated with
he curved line in Fig. 5. If more localised control of the baseline flexibility is needed one has to resolve
se varying bin widths along the spectra.
A vastly more challenging baseline can be found in LIBS spectra as shown in Fig. 6. These contain

ips in the baseline that are impossible to adapt to without also having a baseline that raises high into
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ig. 5. MALDI-TOF spectrum corrected by the estimated baseline. An alternative baseline is indicated which follows the shape
f the peak cluster around 12,000 m/z.
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Fig. 4. Baseline stretched by smoothing splines after smoothing, subsampling and suppression of MALDI-TOF spectrum.
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the peaks. We tested the asymmetric least squares (ALS) baseline estimation, which is a modified
Whittaker smoother, and several other methods with consistently bad results. For instance, if ALS is
used with high enough penalty on the second derivative and low enough weight on positive residuals
(see Ref. [2]) to give a flat baseline under the peaks, false peaks will appear around the baseline dips
after baseline subtraction.

With the proposed method this can be overcome by customizing the subsampling, as proposed in
Ref. [7]. Using narrow bins around the baseline dips at 360 nm and 530 nm, wide bins where the
baseline looks relatively flat and medium bin widths where the baseline is steep around 400 nm we
get the estimation and correction shown in the upper and lower part of Fig. 6. As long as there is not
too much shift in the baseline dips from spectrum to spectrum, the chosen bin widths can be used for
all spectra in the data set.

Additional information

The described baseline estimation is implemented in the R package ‘baseline’ in the CRAN
repository (http://cran.r-project.org) under the name fillPeaks. The four parameters mentioned above
are summarized in Table 1.

Acknowledgements

MethodsX thanks the reviewers of this article (Paul H.C. Eilers and a second reviewer who would
like to remain anonymous) for taking the time to provide valuable feedback.

In
te

ns
ity

400 600 800 1000

0
20

k

nm

In
te

ns
ity

400 600 800 1000

0
20

k
40

k

Fig. 6. LIBS spectrum corrected using 4S Peak Filling with varying baseline interval widths to handle baseline dips around
360 nm and 530 nm and the steep ridge around 400 nm (no smoothing, �3 window width, and 2 iterations).

Table 1
Summary of the parameters controlling the baseline estimation.

Description R name Suggested starting value

Second derivative penalty for smoothing. lambda Centred in noise band: 4
Below spectra: 0

Number of buckets for subsampling or a vector of start/end
points of buckets.

int 1/10 of the number of wavelengths/masses/points

Initial half width of windows used for suppression. hwi Half the width of the widest peak (full
width = centre point � hwi)

Number of iterations for suppression. it 10
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