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Abstract

When a series of Bernoulli trials occur within a fixed time frame or limited space, it is often interesting to assess if the successful outcomes
have occurred completely at random, or if they tend to group together. One example, in genetics, is detecting grouping of genes within a genome.
Approximations of the distribution of successes are possible, but they become inaccurate for small sample sizes. In this article, we describe the
exact distribution of time between random, non-overlapping successes in discrete time of fixed length. A complete description of the probability
mass function, the cumulative distribution function, mean, variance and recurrence relation is included. We propose an associated test for the
over-representation of short distances and illustrate the methodology through relevant examples. The theory is implemented in an R package
including probability mass, cumulative distribution, quantile function, random number generator, simulation functions, and functions for testing.
c⃝ 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).
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1. Introduction

In some problems, especially in the domain of bioinformat-
ics where gene clusters and operons are often studied [1], the
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data can be seen as a number of Bernoulli trials (defined as R)
where the number of successes (defined as r ≥ 2) is known.
The scientific questions of interest are related to the distances
between the successes; are they evenly distributed in the series
or do they cluster? Available statistical distributions and soft-
ware today can only give approximate solutions to the problem
(see the following section, Problems and Background). There-
fore a formal, statistical test procedure is needed.
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In this article we propose a distribution and accompanying
test to solve these problems. Since the main areas of application
are likely to be in bioinformatics and computational statistics,
it is natural to make the procedures available in the form of
an R package. We have implemented efficient procedures with
simple user interfaces that cover all facets of the theory in an R
package, called fixedTimeEvents.

2. Problems and background

There are several distributions that describe the number of
successes over some interval in time or space, for example the
Poisson, exponential, negative binomial and geometric distri-
butions [2]. The Poisson distribution describes the probability
of a given number of non-overlapping successes occurring in
a fixed interval. With the exponential distribution, we find the
distance (‘waiting time’) between successful events in the Pois-
son distribution. In its discrete version, the negative binomial
distribution is often named the Pascal distribution. This gives
the number of successes in a series of Bernoulli trials before a
given number of failures have occurred. Likewise, the geomet-
ric distribution gives the distance between successful Bernoulli
trials when there is no upper limit to the number of trials.

With discrete, non-overlapping trials, the probability of suc-
cess in each Bernoulli trial is defined to be r/R = #successes/
#trials, where r is the number of successes and R is the number
of trials. However, the extra limitation on the total number of
trials, means the distance between two consecutive successes,
X , does not have an exact geometric distribution. Here, the dis-
crete random variable X is defined to be 1 if two consecutive
successes are neighbours, 2 if there is a single failure between
the successes and so on. For large R and r , the probability mass
function of X can be approximated by a discretised version of
the exponential distribution. However, this approximation is in-
accurate for small R or r and it becomes worse as the ratio
r/R → 1. For these reasons, we present a distribution for X
which is exact regardless of the sizes of R and r . Theorems
with proofs (see the Appendix section) are included, and code
samples based on the accompanying R package [3] are given in
the Examples section.

Following the above definition of X as the distance between
two consecutive successes in a fixed-length series of Bernoulli
trials, we make some observations regarding the realisations of
this distance. If one success follows the next, we observe the
minimum distance: min(X) = 1. The maximum obtainable
distance is max(X) = R −r +1. This occurs if a single success
is located in one end of the series of R events while all other
successes are clustered at the opposite end. If R = 5 and r = 3,
R − r + 1 = 5 − 3 + 1 = 3, leading to 3 possible realisations
of X : x ∈ 1, 2, 3 (x is an observed distance in a sample). This
is easily verified by looking at the results in Table 1.

We propose the following probability mass function for the
distance X between consecutive successes when there are r
successes in R trials:

P(X = x; R, r) = f (x; R, r) =


R−x
r−1




R
r

 (1)
for x ∈ 1, . . . , R − r + 1, r ≥ 2 and R ≥ r , where the notation
n
p


is used to signify the binomial coefficient, for example

R
r


= R!/(r !(R − r)!).

This follows the ordinary argument of (#successful outcomes)
/(#possible outcomes). It is easier to justify the function if
one expands the fraction with r − 1. Starting with the de-
nominator, this is simply the number of possible consecutive

pairs in all unordered samples of r from R, i.e. (r − 1) ·


R
r


.

The numerator, (r − 1) ·


R−x
r−1


, is the number of possible con-

secutive pairs with distance x among all possible ways of draw-
ing r from R without replacement. In the Examples section this
can be verified by counting the occurrences in a small example.

We also observe that the fraction


R−x
r−1


/


R
r


gives the pro-

portion of trials where r − 1 is selected from the remainder of
R when fixing the first success at position x .

All values of P(X = x; R, r) are positive since they are
defined as ratios of binomial coefficients. It can be shown thatR−r+1

x=1


R−x
r−1


=


R
r


, such that the probability mass sums

to 1 over all values of x . The most extreme values of x will
have the following simple probabilities: f (1; R, r) = r/R and

f (R−r+1; R, r) = 1/


R
r


, which are the largest and smallest

values of f (x; R, r), respectively.

Theorem 1. The mean value of the proposed distribution is:

µ =
R + 1
r + 1

. (2)

The variance is of less interest as the distribution is highly
asymmetric, but it can also be shown that a general expression
is the following:

σ 2
=

r(R + 1)(R − r)

(r + 1)2(r + 2)
. (3)

The most trivial example would be when the number of
successful events equals the number of possible events (R = r )
which leads to µ = 1 and σ 2

= 0, which is obvious, as all
distances between successes will be 1.

Theorem 2. The recurrence relation for the proposed distribu-
tion for increasing values of x is:

P(X = x + 1; R, r) =


R−(x+1)

r−1




R
r


=


1 −

r − 1
R − x


P(X = x; R, r). (4)

Theorem 3. The cumulative distribution function of the
proposed distribution is:
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P(X ≤ x; R, r) = F(x; R, r) =

x
k=1

f (k; R, r)

= 1 −


R−x

r




R
r

 . (5)

This can be used for assessing if the observed number of short
distances is higher than would be expected by random chance.
Proofs of the theorems are found in the Appendix section.

2.1. Hypothesis testing

As mentioned in the introduction, we are typically interested
in if the successes are evenly distributed or if they are clustered
somewhere in the series. It is natural to start out considering the
population mean, which we denote as X̄ . For a given series of
R events with r successes, x̄ is the observed average distance
between successes, which we may think of as a sample from
X̄ . However, x̄ contains very limited information about the
clustering of successes. In fact, given R and r a sufficient
statistic for x̄ is the distance from the first to the last success.

A more informative and tunable test for clustering of
successes involves the cumulative function from Eq. (5). Let
the random variable Y be the number of distances smaller than
xlim , having realisation y = #(x < xlim). The expected value
is E(Y ) = (r − 1)F(xlim; R, r) = µxlim . We formulate the
hypothesis test:

H0 : y = E(Y )

H1 : y > E(Y ),
(6)

where the alternative hypothesis is that the number of small
distances are over-represented. As distances are either smaller
than xlim or not, Y can be described as binomial with n = r −1
trials, k = y successes, and a probability of success equal
to p = F(xlim; R, r). The associated p-value P(Y ≥ y) =r−1

k=y


r−1

k


pr−1(1 − p)r−1−k is the probability of observing

Y at least as large as y given that H0 is true.
The critical value of the test is found using the quantile

function for the binomial distribution with the same p and
n = r−1 trials, and a quantile value of 1−α (significance level).
Correspondingly, the power of the test is found by calculating
the cumulative binomial probability for the critical value with
n = r − 1 trials and a probability of success p = y/(r − 1).

3. Software description

The software package fixedTimeEvents is implemented in the
programming language R. It follows the template used by the R
language’s distribution functions where the letters d , p, q and
r at the beginning of a function name indicate the probability
density (mass), cumulative distribution, quantile, and random
number functions, respectively. For simplicity Liland is used as
the distribution name in the R package, i.e. dLiland, pLiland,
qLiland and rLiland. Installation of the package is done per
usual R software practise either through user interface menus
(if available) or by writing install.packages(‘fixedTimeEvents’)
in the console/terminal. Before describing the software in more
details, a note has to be made on numerical limitations.

3.1. Limitations of the binomial coefficient

Binomial coefficients are impossible to compute directly

when numbers become large, e.g.


4000
2000


typically is reported

as I n f by mathematical software. However, doing the
calculations in the logarithmic domain and utilising for instance
Stirling’s approximation ( ∼1730 AD) of the factorial (second
order approximation in Eq. (7)), one can achieve a high
degree of accuracy also for arbitrarily large problems. All
calculations for the probability mass function are performed
in the logarithmic domain before converting the result back
through the exponential function.

ln(n!) ≈ n ln(n) + ln


n


2π

n


− n + ln


1 +

1
12n


ln f (x; R, r) ≈ ln((R − x)!) − ln((r − 1)!)

− ln((R − x − r + 1)!)

− ln(R!) + ln(r !) + ln((R − r)!).

(7)

In the software implementation we use the exact binomial

coefficients when


R
r


< 1020 to avoid large round-off

errors and incalculable results and switch to the approximations
otherwise to obtain the highest possible accuracy in all cases.
An exception is made for the cumulative distribution function
with approximation, where the maximum value x = R − r + 1

would lead to the calculation of log(−1) because


R−(R−r+1)
r


=


r−1

r


. The result should be exactly 1 and is thus plugged

directly into return value(s).

3.2. Implementation

In the R language, the binomial coefficient is represented by
the function choose. As described in the previous subsection,
we use the function choose whenever possible, i.e. when it
returns a finite value <1020, and replace this by Stirling’s
approximation otherwise.

The quantile function does not have an analytical solution.
As the distribution is discrete, generating all possible
distribution values for moderate sized R and searching using
the match function finds the solution without noticeable lag.
For R > 106 a sequential search is made, dividing the problem
into manageable sequences of length 106 each and stopping as
soon as the solution is found.

In addition to the main distribution functions, two more
sets of functions are available in the package: statistical testing
functions and simulation functions. The former are named
Liland.test, Liland.crit and Liland.pow. These are the proposed
test, the critical value of the test and the power of the test. The
latter are named simLiland, simLiland2 and simLilandMu. They
perform sampling repeatedly from a given Liland distribution,
sampling from the Bernoulli distribution and summarising, and
sampling random mean “Liland” numbers.
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Fig. 1. Probability mass and cumulative distribution for R = 1600 and r = 9.
Table 1
All possible ways of distributing 3 successes among 5 events.

# Position

1 ✓ ✓ ✓

2 ✓ ✓ ✓

3 ✓ ✓ ✓

4 ✓ ✓ ✓

5 ✓ ✓ ✓

6 ✓ ✓ ✓

7 ✓ ✓ ✓

8 ✓ ✓ ✓

9 ✓ ✓ ✓

10 ✓ ✓ ✓

4. Illustrative examples

4.1. Counting occurrences

An example small enough to show all possible combinations
of positions, while still shedding some light on the properties
of the proposed distribution, is the one used previously with
R = 5 and r = 3. In Table 1 all possible ways of distributing 3
successes among 5 trials are shown. We observe that there are

10 rows in the table corresponding to the


R
r


=


5
3


= 10

ways to sample 3 successes from 5. Also, there is a total of

(3 − 1) ·


5
3


= 20 pairs of successes among these. There are

three possible values for x ∈ 1, 2, 3. x = 1 means that a pair of
consecutive successes are neighbours.

Starting with the largest value of x , we can count the
occurrences of x = 3 in Table 1 to be once on row 3 and once
on row 6. This verifies the expanded numerator (r − 1) ·


R−3
r−1


= 2·


2
2


= 2 for x = 3. For x = 1 and x = 2 the counts would

be 2 ·


4
2


= 12 and 2 ·


3
2


= 6, respectively. Combining

numerators and denominators we have: P(X = 1; R = 5,

r = 3) =
12
20 =

6
10 , P(X = 2; R = 5, r = 3) =

6
20 =

3
10 ,

and P(X = 3; R = 5, r = 3) =
2

20 =
1

10 . These naturally sum
to 1.

4.2. Sample distributions

To illustrate some properties of the proposed distribution we
have plotted an example of the probability mass and cumulative
distribution for R = 1600 and r = 9 in Fig. 1. These values
of R and r could for instance be the number of bases of a
16S rRNA sequence and the number of hyper-variable regions
in it [4]. We observe that the probability mass function is
monotonically decreasing, and that it is most steep close to
1. The steepness will vary with the ratio R/r , but the general
shape will be similar for all possible values of R and r .

R <- 1600 # trials
r <- 9 # successes

# Probability mass and distribution values for all
# possible values of x (vector from 1 to R-r+1):
mass <- dLiland(1:(R-r+1), R, r)
distribution <- pLiland(1:(R-r+1), R, r)

A quick visual check of the distribution of ones data can be
done by a quantile–quantile plot, like the one in Fig. 2. In this
example 1000 observations have been sampled with R = 2000
and r = 120 and plotted against the theoretical distribution with
the same properties. Here the observations mostly follow the
qq-line (the line through quantiles 0.25 and 0.75), as expected.
There is less coincidence towards the high values of x . This is
also expected, since observations are less densely sampled here.

R <- 2000 # trials
r <- 120 # successes
n <- 1000 # random samples

# Random sampling and theoretical quantile
# values from the proposed distribution:
random.sample <- sort(rLiland(n, R, r))
theoretical.distr <- qLiland(ppoints(n), R, r)

4.3. Gene regulation

We consider the case where 1949 genes are arranged along
a bacterial chromosome in the same reading direction. Their
position relative to each other and possible overlap is not
interesting in this case, only the order of the start of the genes.
In a study of gene expression, a total of 162 genes have been
classified as regulated, based on some per-gene test procedure.
We consider the status of each gene (regulated/not regulated)
as a Bernoulli trial, where ‘regulated’ is the same as ‘success’,
i.e. R = 1949 and r = 162. Bacterial genes are often arranged
in operons, i.e. several neighbouring genes are, more or less,
regulated by the same sigma factor (see e.g. [1]). This means
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Fig. 2. Quantile–quantile plot of 1000 randomly sampled observations with
R = 2000 and r = 120 against the theoretical distribution (qq-line in dashed
line type).

that regulated genes should show a tendency to cluster along
the chromosome, unless the expression data and subsequent
testing procedure have allowed too many genes to obtain a false
positive status as regulated. In the latter case we expect the
(apparently) regulated genes to appear evenly distributed.

This corresponds to a hypothesis test situation as in Eq. (6),
where we want to test if the distance x = 1 occurs more fre-
quently than we would expect if the regulated genes were dis-
tributed at random, i.e. xlim = 2. From our proposed cumulative
distribution function in Eq. (5) we get F(1; 1949, 162) = 0.083
and E(Y ) = (162 − 1)F(1; 1949, 162) = 13.4. Using 0.083 as
the binomial probability, we easily find that if at least 19 of the
r − 1 = 161 distances have the value 1, we can reject H0 of
Eq. (6) at a 5% level, indicating that genes classified as regu-
lated tend to be neighbours. Looking at Fig. 3, we see that the
observed y = 73 is far to the right of the critical values and
thus associated with a very low p-value. This gives support to
the claim that the regulated genes tend to be neighbours.

R <- 1949 # trials

r <- 162 # successes

# P(x < 2; R = 1949, r=162):

p <- pLiland(1, R, r) # = 0.083

# Probability of randomly observing

# y > 1, ..., 80, the corresponding

# critical value and power at y=73:

Prob <- pbinom (1:80, r-1, p,

lower.tail = FALSE)

crit <- Liland.crit(1, R, r) # = 19

pow <- Liland.pow(1, R, r, 73) # ≈ 1

4.4. Lottery numbers

Lottery numbers are sometimes a theme of conversation,
especially with regard to the apparent over-representation of
consecutive numbers that are often drawn. In a lottery where
r numbers are drawn from R possible outcomes, e.g. r = 7 and
R = 34, the distance between the drawn numbers (after sorting)
follows the proposed distribution. If we consider a weekly
Fig. 3. Probability of observing more distances shorter than 2 (P(Y > y|x <

2)) than the expected number E(Y ) = 13 as a function of the observed number
(y). Critical values for 5% and 1% test level are 19 and 22, respectively.

Fig. 4. Probability mass for R = 34 and r = 7, corresponding to drawing
7 lottery numbers from 34 possible outcomes. The dashed line indicates the
corresponding proportions from 52 weekly random draws.

lottery we can sample uniformly 7 numbers from [1, 2, . . . , 34]
without replacement 52 times to obtain the 52 x 6 distances
that would constitute a normal year of lottery. In Fig. 4 the
proportions of each distance from such an experiment is plotted
together with the theoretical probability mass.

# Sample 52 sets of lottery numbers and
# put them in the matrix X:
X <- matrix(0, 52, 7)
for(i in 1:52)

X[i, ] <- sort(sample(1:34, 7, replace = FALSE))

# Calculate the distance between successes
# in each of the lottery draws:
Xdiff <- t(apply(X, 1, diff))

# Calculate the proportions of occurrences
# for each possible distance between successes
# and calculate the theoretical mass values
# from the proposed distribution:
proportions <- table(c(Xdiff)) / (52*6)
theoretical.distr <- dLiland(1:28, 34, 7)

This confirms the typical notion that lottery numbers are of-
ten consecutive, as 20.6% of the distances are 1, and more than
50% have distances of x ≤ 3. The expected number of pairs of
consecutive numbers in a single draw is (7 − 1) · F(1; 34, 7) =

6 ·0.206 = 1.235. Critical values for the proposed test for over-
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Fig. 5. Lottery numbers clustering around the extreme values 1 and 34. These
are 2 of the 6 possible draws that would lead to a distance between consecutive
numbers of 28.

representation of neighbouring pairs at 5% and 1% levels of
significance are at 3 and 4, respectively. This means that 3 or
4 (possibly consecutive) pairs of consecutive numbers would
happen regularly, just by chance, while 5 pairs would be more
unlikely (critical value for 0.1% level of significance). The latter
would occur only if all numbers were clustered in two consec-
utive groups. The least probable type of draw we can observe is

P(X = 28; R = 34, r = 7) = 6/


6 ×


34
7


= 1/


34
7


=

1.86 × 10−7, corresponding to series of lottery numbers clus-
tered near the ends as shown in Fig. 5.

5. Conclusions

In this article we have introduced theory and an R package
for the exact distribution of distances between discrete events
in fixed time. As shown, the distribution is easily verifiable
for small, countable examples. For larger samples it can
be approximated by a discretised version of the exponential
distribution, but using Stirling’s approximation of the factorial
instead, we can achieve high precision for problems of all sizes.

Testing concerning the mean distance turns out to be of little
value as this would only test for the combined distance from the
first to the last success, which seldom is of interest. However,
testing using the binomial distribution can be applied, e.g. to
see if short distances are over- or under-represented. The gene
regulation example shows how the proposed distribution can
be applied on real data, while the lottery example is an elegant
demonstration of why lottery numbers often cluster.

The R package fixedTimeEvents includes all basic distribu-
tion functions, statistical testing functions and functions to per-
form simple, numerical simulations regarding the distribution.
The main motivation for generating the distribution and accom-
panying test of over-representation of short distances has been
problems in bioinformatics, but the theory is fully general for
any problem of equal characteristics. Implementing this in the
R language, makes it available directly for R users and indi-
rectly for users of languages that can call upon R libraries like
Python, e.g. [5].

Appendix. Proofs

Proof of Theorem 1. The mean value of a discrete distribution
is µ = E(X) =


x x × P(X = x). If we write this
out using the proposed distribution and apply the relationshipn
j=k(n + 1 − j)


j−1
k−1


=


n+1
k+1


we get:

E(X) = 1


R−1
r−1




R
r

 + 2


R−2
r−1




R
r

 + · · · + (R − r + 1)


r−1
r−1




R
r



=

R−r+1
j=1

j


R− j
r−1




R
r

 =


R+1
r+1




R
r

 =
R + 1
r + 1

. (A.1)

Proof of Theorem 2. The cumulative distribution is the sum of
all masses up to X = x , i.e.:

F(X = x; R, r) =

x
k=1


R−k
r−1




R
r



=


R−1
r−1


+


R−2
r−1


+ · · · +


R−x
r−1




R
r

 . (A.2)

If we add and subtract


R−x
r


from the numerator, we can use

the recursive formula
 n

k


=


n−1
k−1


+


n−1

k


to sequentially

collapse the sum:
R−1
r−1


+ · · · +


R−x
r−1


+


R−x

r


−


R−x

r




R
r



=


R−1
r−1


+ · · · +


R−x+1

r−1


+


R−x+1

r


−


R−x

r




R
r


...

=


R
r


−


R−x

r




R
r

 = 1 −


R−x

r




R
r

 . (A.3)

Proof of Theorem 3. The recurrence relationship between
P(X = x; R, r) and P(X = x + 1; R, r) can be shown by
a simple factorisation of the numerator since the denominator
is unchanged:

R − x

r − 1


=

(R − x)!

(r − 1)!(R − x − (r − 1))!

=
(R − (x + 1))!(R − x)

(r − 1)!(R − (x + 1) − (r − 1))!(R − x − (r − 1))

=


R − (x + 1)

r − 1


R − x

R − x − (r − 1)
. (A.4)
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Solving for


R−(x+1)
r−1


and reintroducing the denominator we

get the following:
R−(x+1)

r−1




R
r

 =
R − x − (r − 1)

R − x


R−x
r−1




R
r



=


1 −

r − 1
R − x

  R−x
r−1




R
r

 . (A.5)
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