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Untreated wooden surfaces degrade when exposed to natural weathering. In this study thin wood samples were studied for weather 
degradation effects utilising a hyperspectral camera in the near infrared wavelength range in transmission mode. Several sets of sam-
ples were exposed outdoors for time intervals from 0 days to 21 days, and one set of samples was exposed to ultraviolet (UV) radiation 
in a laboratory chamber. Spectra of earlywood and latewood were extracted from the hyperspectral image cubes using a principal 
component analysis-based masking algorithm. The degradation was modelled as a function of UV solar radiation with four regression 
techniques, partial least squares, principal component regression, Ridge regression and Tikhonov regression. It was found that all the 
techniques yielded robust prediction models on this dataset. The result from the study is a first step towards a weather dose model 
determined by temperature and moisture content on the wooden surface in addition to the solar radiation.
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Introduction
The use of wood outdoors is widespread in a variety of appli-
cations, one of them being as claddings on building façades. 
Untreated wood is nowadays frequently utilised as cladding in 
modern buildings, and there is a trend towards less surface 
treatment of the wood to obtain a naturally weathered result. 
Ensuring the optimal choice of wood species requires a thor-
ough understanding of the deterioration mechanisms of wood 
during outdoor exposure. While it is known that the charac-
teristic grey patina visible after a few months of exposure is 
mostly caused by photodegradation of lignin in the middle 
lamella by ultraviolet (UV) radiation,1 there are several other 

factors involved, such as humidity, temperature, biological 
growth, chemical and mechanical abrasion.2 The elements 
used in façades made of wood can often cause a non-uniform 
degradation pattern such as shown in Figure 1. Various archi-
tectural solutions, such as the location of windows, overhangs 
etc. induce specific discoloration patterns, since these affect 
the microclimate on the surface. This is because the microcli-
mate underneath a roof overhang is different from that on an 
open façade, which again is different from one under a window.

The microclimate at each point of a wooden façade can be 
modelled from the exterior climate using ray tracing to account 
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for micro-scale variation in the solar irradiance, temperature 
and moisture on the wall, as presented in Thiis et al.3

In order to foresee the degradation on the different parts of 
a wall, accurate prediction models of wood degradation as a 
function of the main climatic factors are important.

Near infrared (NIR) spectroscopy and hyperspectral imaging 
are well-suited scientific tools for rapid and non-destructive 
characterisation of wood surfaces.4,5 A review of different band 
assignments for NIR spectroscopy on wood was written by 
Schwanninger et al.6 An advantage of these techniques is the 
possibility of determining both chemical and physical proper-
ties of a large number of samples.

The goal of this study was to assess the degradation of wood 
due to weathering, and to model degradation kinetics based 
on thin wood samples, exposed outdoors, by means of NIR 

hyperspectral imaging. The study has focused on the influ-
ence of UV radiation on the weathering of wood and its percep-
tibility in NIR spectral images of the exposed wood samples. 
According to Grossman,7 a widely used practice has been to 
use total energy (Joules) from the integrated solar spectrum 
as the timing variable for the amount of radiation a sample has 
been exposed to. This is obtained by integrating over the entire 
spectral power curve of sunlight, and multiplying by exposure 
time.1 Here, this approach is built upon by comparing results 
from partial least squares (PLS) and principal component 
regression (PCR), with results obtained using Tikhonov regu-
larisation.8 After accounting for the materials and equipment 
used, the pre-processing procedures will be presented as well 
as details on the statistical analysis, with a particular focus on 
the Tikhonov regularisation method.

Materials and methods
Sample preparation
Experimental samples were prepared from one piece of Norway 
spruce wood (Picea abies) on a slicing planner (Super meca, 
Marunaka, Japan) to a thickness of ~100 μm, and an effective 
surface exposed of 30 × 35 mm. A total of 105 samples were 
exposed outdoors in Ås, Norway, facing south at 45° as shown 
in Figure 2 (left). On the first day, 21 samples were placed 
outside for exposure, and then one sample was collected each 
day and stored at room temperature. After 7 days a new set 
of 21 samples were exposed, and on the following days one 
sample was collected each day following the same procedure 
as for sample set 1. This procedure was followed for 5 sample 
sets of 21 samples each. After collecting all samples they 
were stored in darkness in a climatic chamber with a constant 
temperature of 20°C and 65% relative humidity to obtain an 

Figure 2. Left: samples exposed outdoors facing south. Right: samples from different sample sets exposed for 1 (no. 45), 10 (no. 93) and 
20 (no. 104) days.

Figure 1. Unevenly weather-exposed wooden surface on a 
building façade, Aas, Norway.
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acclimatised weight before further processing. Three samples 
from different sample sets are shown in Figure 2 (right) and 
demonstrate the colour change due to various outdoor expo-
sure times. Weather data for the location was obtained from 
a national weather station located approximately 200 m away 
from the exposure site. The weather station has a pyranom-
eter that measures the solar UV radiation in the wavelength 
region (298–385 nm), which was used as the response value 
when modelling the wood degradation from the NIR spectra.

A supplementary set of 30 samples were exposed in a UV 
chamber (Atlas UVTest). The Atlas UVTest has eight UVA-340 
lamps, with an output of 0.89 W m–2 nm–1 at 340 nm each. The 
samples were exposed in the UV chamber for 1–10 cycles of 
2.5 h continuous UV radiation followed by 0.5 h water spraying.

Chemical composition
A subset of the samples from each exposure group (outdoor 
exposed samples and UV chamber exposed samples) were 
analysed with a simultaneous thermal analyser coupled with 
Fourier transform infrared (FT-IR) spectrometer (STA FF9 F1 
Jupiter, NETSCH, Germany) to estimate the lignin and holocel-
lulose (cellulose + hemicellulose) content. The samples on 
which this measurement was performed had all been placed 
outside on the same day so that they are from one series of 
time exposure. In order to have separated lignin and holocel-
lulose estimates for early- and latewood the samples had to 
be cut into pieces of each. Since the early- and latewood are 
separated by a few millimetres this task was performed with 
a scalpel. The samples were laid on a white background and 
the pieces of early- and latewood were cut in the directon of 
the fibres. The pieces of early- and latewood were then put 
in small containers for the thermal analyser. There was only 
enough material to perform one early- and latewood meas-
urement of each sample.

Spectral imaging and pre-processing
Hyperspectral images were obtained using a linescan 
camera with a spectral resolution of resolution of 6 nm (256 
bands) and a spatial resolution of 320 pixels with a mercury 

cadmium telluride detector having spectral sensitivity in the 
929–2531 nm range (SWIR-LVDS-100-N25E, Specim, Oulu, 
Finland, www.specim.fi). The hyperspectral image acquisi-
tion was carried out in transmission mode using a custom 
setup (Figure 3). This consisted of backside illumination with 
halogen lamps below a semi-opaque glass plate, and another 
transparent glass plate transmitting NIR radiation above the 
samples. At the end of the scan of each sample, a short image 
with the shutter closed is taken and the mean signal from 
each line in this dark image is subtracted from each band in 
the hypercube. This procedure is performed to remove the bias 
level and to correct for pixel to pixel variations in the detector. 
A white calibration has to be performed in order to remove the 
spectral signal from the lamps. However, a regular white cali-
bration Spectralon plate cannot be used in transmission mode. 
To obtain the white calibration, an image of the empty glass 
plate was therefore used so that all the sample images were 
divided by this image after subtraction of the dark signal. The 
dark subtraction and the white calibration can be formulated 
mathematically as in Equation 1.
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where I is the image frame, D is the dark image and W is the 
white calibration image.

The earlywood and latewood parts can be identified on 
the hyperspectral images. In order to automatically extract 
mean spectra from the earlywood and latewood parts of the 
samples, a threshold mask based on principal component 
analysis (PCA) was applied to the images. After performing 
PCA on a selection of the images, it was found that the distinc-
tion between earlywood and latewood was best represented 
in the second component of the PCA. Score images from 
this component were therefore used as references for the 
threshold. Early wood areas of these images were character-
ised by low score values and late wood by high score values, 
but the ranges varied from image to image. To compensate for 
varying ranges, quantiles were used for the threshold instead 
of absolute values. The lower 0.25 and the upper 0.35 quan-
tiles proved to be suitable, as shown schematically in Figure 4. 

Figure 3. Hyperspectral imaging setup in transmission mode.
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The earlywood and latewood masks were then updated to 
include only pixels with scores in those quantiles, respectively.

The recorded transmission spectra were transformed to 
absorbance using a log10 transformation procedure. A few of 
the spectra contain some “dead” wavelengths with intensities 
of 0. Since log10(0) = 1, this caused problems further on when 
analysing the spectra. This was remedied by applying a spike 
removal procedure (htdeadwavelengths from the Hypertools 
package, http://www.models.life.ku.dk/HYPERTools). The ten 
first and the last ten wavelength bands were also excluded 
from the spectra, since they contain random signals associ-
ated with noise.

Since the electromagnetic spectrum is continuous and the 
signal at one wavelength is strongly correlated with signals at 
proximate wavelengths, one can conclude that an ideal spec-
trum should display continuity between neighbouring wave-
lengths. However, various instrumental influences perturb the 
actual signal. Whereas the validity of the data points cannot be 
concluded without further investigation, an a priori knowledge 

permits the use of a set of tools to remove some of this noise 
before any further analysis is performed,9 improving the signal-
to-noise ratio. The simplest of these is calculating a moving 
average over the whole spectrum. Moving average techniques 
can have the undesired effect of smoothing peaks in the spectra, 
particularly shoulders and reducing their intensity, which may 
result in removal of meaningful information.9 As an improve-
ment, Savitzky and Golay9 proposed an alternative solution 
based on the method of least squares, which was used in this 
work. The ideal window size of the moving average depends 
on the wavelength resolution, and in this case a window size of 
nine pixels was found to produce the best results. The model 
used was a second-degree polynomial, without derivatives. An 
illustration of the effect is shown in Figure 5.

In order to study the chemical makeup of the samples most 
successfully, it is important to separate the physical variation 
from the chemical. One of the most meritorious of the avail-
able methods to accomplish this is the (Extended) multipli-
cative signal correction, or (E)MSC.10 The basic idea of MSC 
is to fit a regression model of all the spectra in an image to 
an ideal  (reference) spectrum and a flat baseline, and then 
use the coefficients to perform the correction. EMSC is an 
extension of MSC that includes terms that account for vari-
ation such as differences in scattering over different wave-
lengths.11,12 In this work, a model with parameters for wave-
length and squared wavelength was used, so the model can 
be written as:

 zobserved = a + b1m + b2l + b3l
2 (2)

where zobserved is the observed absorbance spectrum, a the 
baseline offset, b the scaling parameters and l the wave-
length. The mean spectrum of the sample, m, is used as a 

Figure 5. Ten random pixels from an arbitrarily selected image before (top) and after (bottom) Savitzky–Golay smoothing with a window 
size of nine pixels.

Figure 4. Schematic drawing of how the lower 0.25 and the 
upper 0.35 quantiles of the PCA score values were selected to 
represent early- and latewood.

http://www.models.life.ku.dk/HYPERTools
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reference spectrum for the correction. This correction was 
performed for all the spectra in all the samples using the 
HySpec Toolbox (Liland et al., http://nofimaspectroscopy.org).

After pre-processing, it was noted that parts of the spectra 
had a very distinct feature at 1850 nm. The spectra were 
captured from samples that had been stored in a separate 
envelope. It was concluded that this feature was due to different 
moisture conditions in the storage of the samples. This had 
affected the spectra of the samples since the samples are very 
thin and very sensitive to climate conditions. These samples 
were therefore excluded from the analysis.

Regression model development
After pre-processing was completed, the data ready for 
analysis consisted of four data sets which were the early-
wood and latewood mean spectra for each sample in each 
group (outside exposure group and UV chamber group). Two 
approaches for regression analysis of the spectra were used 
to analyse the data: (a) using the mean spectra of early and 
latewood separately as predictor variables and the number of 
days/cycles of exposure as the response variable and (b) using 
weather data from the period to calculate UV solar radiation 
for each sample as response variable. The set of predictor 
variables and the response variable are all continuous, and so 
the point of departure is Ordinary Least Squares Regression, 
of the familiar form: y = b0 + b1×1 + … + bnxn + e. Here b0 is the 
expected value when all x = 0, b1, …, bn are the coefficients 
associated with each variable and e is the error term repre-
senting variation not accounted for by the model. In linear 
algebra notation the data can be arranged as:13

 Xb = y + e (3)

where the rows of X correspond to observations and the 
columns correspond to variables, with a vector of ones added 
to account for the constant term. b is a vector containing 
the regression coefficients and y is the response vector. The 
aim of the regression is to derive a model that predicts new 
observations accurately and reliably. Given an observation with 
response y from a population with an unknown mean m, an 
associated explanatory variable x and an estimate of y given by 
some function 

where the rows of X correspond to observations and the columns correspond to 

variables, with a vector of ones added to account for the constant term. b is a vector 

containing the regression coefficients and y is the response vector. The aim of the 

regression is to derive a model that predicts new observations accurately and reliably. 

Given an observation with response y from a population with an unknown mean m, an 

associated explanatory variable x and an estimate of y given by some function [Eqn 

A] ( )ˆ . y f x= Then the mean squared error (MSE) of [Eq B] ŷ  is given by Equation 4: 
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Table 1. Lignin measurements from the STA-FT-IR analysis. The 
standard deviation of the lignin is 0.23%, based on reference 
measurements. The three control samples were not exposed but 
remained in a dark room with controlled climate.

Days of 
exposure 

earlywood

Lignin 
(%)

Days of 
exposure 
latewood

Lignin 
(%)

0 (control #1) 25.8 0 (control #1) 28.8
0 (control #2) 26.4 0 (control #2) 29.4
0 (control #3) 25.4 0 (control #3) 25.8

2 27.9 2 27.1
3 30.2 3 24.9
5 29.7 5 28.3
6 28.8 6 27.5
8 29.3 8 27.3
9 27.5 9 29.0
11 32.2 11 27.6
12 31.0 12 26.9
14 32.8 14 27.9
15 31.6 15 29.1
17 30.1 17 28.7
19 35.5 19 29.5
20 37.6 20 28.9
21 31.7 21 26.8

http://nofimaspectroscopy.org
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and l is the weight put on objective 2, called the regularisation 
parameter. If l = 0, the result is the classic least squares. As 
l approaches infinity, the coefficients get “nulled” out and only 
the intercept (mean value) remains.17

In our work we used ridge regression and Tikhonov regu-
larisation that introduced a regularisation operator that opti-
mises with respect to the first and second derivatives of the 
coefficient vector.18 In addition, PLS regression19 and PCR20 
were performed on the same data set. As with the regularisa-
tion methods, one of the strengths of PLS regression lies in 
its ability to handle data that are noisy, underdetermined and 
highly collinear.19

To check the validity of the models, the datasets were split in 
two, with 2/3 of each dataset assigned as training data and the 
remaining 1/3 as test data. The observations were assigned at 
random and the model fitted to the training set was used to 

predict for the test set. In order to better assess the reliability 
of the method, a resampling procedure was used in which 
the randomised sampling was performed 1000 times, and 
a model fitted to each. The coefficient of determination was 
recorded and averaged, yielding mean values for R2.

Results and discussion
Regression analysis
The mean values of the coefficient of determination, R2, for the 
four regression methods (ridge, Tikhonov, PLS and PCR) for 
prediction of UV radiation are shown in Table 2. All the four 
techniques yield good regression fits, and none of the tech-
niques outshines the others for these data. The coefficients 
vectors for the four regression methods for outdoor exposed 
earlywood are shown in Figure 6 illustrating that the Tikhonov 
first derivative has a smoother curve, and is hence expected to 
yield a more robust solution. However, this does not seem to 
have any impact on the fit for this dataset.

The mean predicted values versus measured values for 
each data point of the outdoor exposed samples are plotted 
in Figures 7 and 8 for earlywood and latewood, respectively. 
Also shown are histograms of the R2 values for the 1000 model 
runs.

The results for the samples from the UV chamber are shown 
in Figures 9 and 10 for earlywood and latewood, respectively. 
A ridge regression model that was calibrated on the samples 
exposed to the UV radiation chamber applied to predict the 
weather-exposed samples is shown in Figure 11. It can be 

Table 2: Coefficient of determination, R2, for the models developed 
within this study.

Ridge 1st d. 
Tikhonov

PCR-R PLS-R

Weather, early 0.833 0.831 0.837 0.841
Weather, late 0.786 0.749 0.790 0.784
Artificial UV, early 0.784 0.743 0.793 0.781
Artificial UV, late 0.764 0.778 0.760 0.765

Figure 6. Coefficient vectors for the different regression methods.
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Figure 7. Left: prediction of UV exposure on earlywood spectra from outdoor exposed wood samples. 67% of samples were used to 
train the model and 33% were used as independent test set. A randomised sampling of the training and test set was performed 1000 
times. Right: histogram of R2 values from the 1000 models.

Figure 8. Left: prediction of UV exposure on latewood spectra from outdoor exposed wood samples. 67% of samples were used to train 
the model and 33% were used as independent test set. A randomised sampling of the training and test set was performed 1000 times. 
Right: histogram of R2 values from the 1000 models.

Figure 9. Left: prediction of UV exposure on earlywood spectra from samples in the UV chamber. 67% of samples were used to train 
the model and 33% were used as independent test set. A randomised sampling of the training and test set was performed 1000 times. 
Right: histogram of R2 values from the 1000 models.
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seen that the UV radiation exposures are of different orders of 
magnitude for the outdoor and UV chamber exposed samples. 
For the UV lamp in the UV chamber, only the radiation intensity 
for the wavelength 340 nm was known, whereas for the outdoor 
samples the UV radiation is the total integration of the interval 
between 298 nm and 385 nm. Moreover, additional influencing 
factors other than UV radiation were present for the outdoor 
exposed samples, e.g. moisture and temperature, contribute 
to the degradation together with the UV radiation. The UV radi-
ation is not an independent factor, since the effect of a certain 
amount of light energy will act differently depending on other 
climatic factors, as explained in Reference 21.

Chemical analysis
The results from the STA chemical analysis are shown in Table 
1. Note that the estimated amount of lignin and holocellulose 

are given relative to the total weight of the sample. Therefore, 
although the lignin content seems to increase, this value 
must be evaluated relative to the mass loss of the sample due 
to weathering, and the actual lignin content most probably 
decreases. An experiment using X-rays is planned to estimate 
the mass loss in early- and latewood separately in order to 
obtain absolute values for lignin and holocellulose content 
from the STA measurements. A ridge regression of the early-
wood NIR spectra with lignin content as response variable is 
shown in Figure 12.

Conclusion
Applying NIR hyperspectral imaging along with judicious 
use of pre-processing and statistical/data mining tech-
niques appears to be a suitable pursuit of understanding and 

Figure 10 Left: prediction of UV exposure on latewood spectra from samples in the UV chamber. 67% of samples were used to train 
the model and 33% were used as independent test set. A randomised sampling of the training and test set was performed 1000 times. 
Right: histogram of R2 values from the 1000 models.

Figure 11. Predictions of UV exposure on outdoor exposed 
samples using a model that was obtained from the fit of the UV 
chamber exposed samples using ridge regression.

Figure 12. Predictions of lignin content using measured lignin 
as response variable.
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predicting weathering effects on wooden surfaces because it 
is quick, cheap and non-intrusive. The four different regres-
sion models of the NIR dataset all yielded good representa-
tions for degradation due to UV exposure. It turns out that 
shrinking, smoothing or limiting subspace extractions by 
Tikhonov or PLSR yield very similar prediction accuracies. This 
is often the case with hyperspectral data, as there are many 
ways to construct equally accurate and robust regression 
coefficients. To obtain an improved model for the weathering 
degradation, additional qualifiers are called for, because the 
amount of interfering phenomena and their varying intensi-
ties undermines the predictive potential of any fitted model 
to a significant degree. Successfully combining the various 
factors that constitute the weathering effect into a weather 
dose will therefore be an important step in this direction. It 
also appears that if the data used to train the ridge regres-
sion model has enough significant outliers, the algorithm can 
be forced to choose an over-fitted model. While this problem 
could be addressed and solved by removing the observa-
tions from the data set, this severely reduces the number of 
samples. However, if only some wavelengths are affected while 
the other wavelengths maintain their predictive power, it might 
be advantageous to use methods that can perform variable 
selection (e.g. LASSO or elastic net) and automatically choose 
the most reliable variables (wavelengths).

The result from the study is a first step towards a weather 
dose response model determined by temperature and mois-
ture content on the wooden surface in addition to the solar 
radiation. A weather dosage can be used in combination with 
microclimate models (such as presented in Thiis et al.3) as 
input to simulation tools for architects so that a predicted 
visual aspects and durability of a façade can be taken into 
account when planning a building.
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